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1. Introduction 

In cooperative game theory with transferable utilities (TU), the previous literature has 

focused on the question of how to split the grand coalition’s payoff. This paper begins by 

asking a fundamentally different question: Is it always rational to split the grand coalition’s 

payoff? If the answer is no, then in what games is it irrational to split the grand coalitional 

payoff? 

The paper provides conclusive answers by exploring the possibility that players could 

achieve payoffs higher than the grand coalition’s payoff, denoted as v(N).  Such exploration 

leads to the maximum of generated payoffs (mgp) for coalitional TU games and leads to the 

equivalence among three arguments: i) it is irrational to split v(N); ii) mgp is greater than 

v(N); and iii) the core of the game is empty.  In other words, core existence in coalitional TU 

games can be understood by the rationality of splitting v(N), in addition to the known result 

that it is balanced (Bondareva [1962], Shapley [1967]) and that its v(N) is greater than the 

minimum no-blocking payoff (mnbp, Zhao [2001]).  Because game theory is the study of 

players’ rationality, and because it is irrational to split v(N) in games with an empty core, the 

equivalence between empty core and the irrationality of splitting v(N) suggests the need to 

modify previous studies on splitting v(N), which has far-reaching implications for future 

research in cooperative game theory.  In particular, it discourages future research on core 

enlargements such as the stable set, the bargaining set, and the ε-core, because such non-core 

splits of v(N) violate players’ rationality. 

The discovery of new generated payoffs allows us to answer four other (perhaps more 

important) questions: What payoffs will be split? How will the payoff be split? What 

coalitions will be formed? and How long will each of the coalitions be formed by rational 

players in coalitional TU games?  Briefly answering these questions (in order), players will 
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split the game’s maximal payoff (mp), defined as the larger of v(N) and mgp; the set of stable 

splits of mp is equal to the core if it is rational to split v(N) (i.e., mgp≤ v(N)) and equal to the 

optimal set for mnbp if otherwise (i.e., mgp> v(N)); players will form coalitions in those 

minimal balanced collections that generate the game’s mp; and each coalition in the formed 

collection will be formed for a length or percentage of time determined by the collection’s 

unique balancing vector. 

Finally, the paper obtains analogous results in coalitional non-transferable utilities 

(NTU) games.  Due to the generality of non-transferable utilities, some of the NTU results 

are weaker than the corresponding TU results.  In particular, the irrationality of choosing 

from the grand coalition’s payoff set is only sufficient for an empty NTU core, although the 

irrationality of splitting v(N) is both necessary and sufficient for an empty TU core. 

 The rest of the paper is organized as follows.  Section 2 reviews the known core 

results, section 3 studies the generated payoffs and reports a new core theorem, and section 4 

studies the maximal payoff and establishes the coalition formation theory.  Section 5 obtains 

analogous results in coalitional NTU games, section 6 concludes, and the appendix provides 

the proofs. 

2. Description of the Problem 

This section reviews the concept of the core and its known existence results in 

coalitional TU games.  Let N = {1, 2, ..., n} be the set of players, and N = 2N be the set of all 

coalitions.  A TU game in coalitional form (or characteristic form), given below,  

(1) Γ = {N, v(.)}, 

is a set function v: N → R+ with v(∅) = 0, which specifies a joint payoff v(S) for each 

coalition S ∈ N.  We use a lowercase v in v(.) to define the above TU game (1), and an 
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uppercase V in V(.) to define coalitional non-transferable utility (NTU) games in section 5.   

A payoff vector is any x = (x1,…, xn)∈ Rn
+, with xi as player i’s payoff for each i∈ N.   

Let X(v(N)) = {x∈ Rn
+ |Σi∈Nxi

 = v(N)} denote the set of payoff vectors that are splits of v(N), 

which is often called the preimputation or preimputation space (see Maschler [1992] for 

surveys). Given S∈N, a split x∈X(v(N)) is unblocked by S if it gives S no less than v(S) (i.e., 

Σi∈Sxi
 ≥ v(S)), and it is in the core (or a core vector) if it is unblocked by all S≠ N.  Denote the 

set of all core vectors for the game (1) as 

 (2) c(Γ) = {x∈ X(v(N)) | Σi∈Sxi
 ≥ v(S) for all S ≠ N}. 

We use a lowercase c in c(Γ) to denote TU core and an uppercase C in C(Γ)  to 

denote NTU core in section 5.  Given the game (1), Bondareva (1962) and Shapley (1969) 

showed that its core is non-empty if and only if it is balanced.  A balanced game is defined 

below. 

Given a collection of coalitions B = {T1, ..., Tk} and a player i∈N, the subset of 

coalitions that include i as a member is B (i) = {T∈ B | i∈T}.  B is a balanced collection (or 

balanced) if it has a balancing vector, which is a k-dimensional positive vector w∈ Rk 
++ such 

that ΣT∈B(i)wT = 1 for each i∈N.  A balanced collection can be interpreted as a balanced 

assignment for assigning n students into k (1< k < n) Internet chat rooms (i.e., coalitions or 

discussion groups).  Suppose that each student has one unit of total connection time (= 100 

minutes) and could simultaneously join several chat rooms through several connections (i.e., 

by simultaneously logging onto several computers). 

Define an assignment as a pair (B, w) of chat rooms and opening times, where B = 

{T1, ..., Tk} is the set of chat rooms (Tj ≠ ∅, all j), and for each T∈ B,  wT > 0 is the length (or 

percentage) of time during which chat room T opens (i.e., it opens for 100× wT minutes).  The 
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set of chat rooms assigned to each student i  is B(i) = { T ∈ B | i ∈ T }, so i’s total participating 

time is ΣT∈B(i)wT.   Then, (B, w) is a balanced assignment if ΣT∈B(i)wT = 1 for all i.  In words, a 

balanced collection is a balanced assignment such that the total participation time for each 

student is precisely 100 minutes.  Now, the game (1) is balanced if Σ T∈BwTv(T)  ≤ v(N) holds 

for each balanced B  with balancing vector w. 

The equivalence between balancedness and the non-empty core was proved by 

applying the duality theorem to the following linear programming problem (see Myerson 

[1991], pp. 432-433, and Kannai [1992], pp. 360-361):1 

(3) Min {Σi∈Nxi
 | x∈ Rn

+; Σi∈S xi ≥ v(S) for all S ≠ N, and Σi∈Nxi = v(N)}. 

The minimum no-blocking payoff (mnbp) for game (1) is defined as 

(4) mnbp = Min {Σi∈Nxi
 | x∈ Rn

+; Σi∈S xi ≥ v(S) for all S ≠ N}. 

The equivalence between v(N)≥ mnbp and non-empty core (Zhao [2001]) is a refinement of 

the intuition that the core will be non-empty if v(N) is sufficiently large.2  One advantage of 

the mnbp method is that it characterizes the core’s interior: the core has a non-empty 

(relative) interior if and only if mnbp< v(N) holds.   

 Although the minimization problem (4) for mnbp differs from (3) only in that the 

grand coalition’s constraint is removed, their duality results have completely different 

                                                 
1   Alternatively, it can be proved by applying the convex hyperplane separation theorem, which leads to the 

duality theorem for (3).  Because the objective of (3) is the constant v(N), its optimal and feasible sets are 

identical, which coincides with the core.  By the duality theorem, c(Γ) ≠ ∅  is equivalent to that the dual 

problem’s objective is bounded by v(N), or that the game is balanced. 

2   To see such intuition, let the vertical axis denote v(N), and fix all v(S), S≠N.  Now, start with a large v(N) 

(so its core is non-empty) and keep reducing v(N).  The core will eventually become empty after v(N) falls 

below a critical value, which is equal to the above mnbp. 
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implications.  As readers will see in the next two sections, the duality theorem for (4) not 

only provides a new argument for core existence, but it also answers four other (perhaps 

more important) questions: What payoffs will be split? How will the payoff be split? What 

coalitions will form? and How long will each of these coalitions be formed by rational 

players in our game (1)? 

3.   The Maximum of Generated Payoffs and a New Core Theorem 

In what games is it irrational to split v(N)?  Let us begin with an inessential game in 

which v(N) < Σi∈Nv(i).3   Will rational players split v(N) in this game?  The answer is no, 

because players together are better off by splitting Σi∈Nv(i), instead of v(N).     

Similarly, rational players will not split v(N) in games in which there is a partition ∆ 

such that v(N) < gp(∆) = ΣS∈∆v(S), where gp(∆) = ΣS∈∆v(S) is the payoff generated by the 

partition ∆.4  Moving further along this line of argument, we define the payoff generated by a 

minimal balanced collection5 and the mgp as below:     

Definition 1: Given game (1) and a minimal balanced collection B with its unique 

balancing vector w, the payoff generated by B  is given by gp(B) = Σ T∈BwTv(T), and the 

maximum of generated payoffs (mgp) is given by 

(5) mgp = mgp(Γ)= Max {gp(B) | B ∈ B}, where 

(6) B = {B = {T1, ..., Tk} |N∉ B, B is a minimal balanced collection} 

denotes the set of all minimal balanced collections. 

                                                 
3   We simplify v({i}) as v(i), v({1,2}) as v(12).  Similar simplifications apply to other coalitions.   

4   Such payoffs from a partition have been studied for other purposes. For example, Guesnerie and Oddou 

(1979) and Sun et al. (2005) studied the c-core or C-stable set, and Zhou (1994) studied his bargaining set.  

5   A minimal balanced collection is a balanced collection such that no proper subcollection is balanced.  One 

can show that a balanced collection is minimal if and only if its balancing vector is unique. 
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 The definition considers only minimal balanced collections, because a non-minimal 

balanced collection is the union of minimal balanced collections.  To ameliorate the 

conceptual difficulty in understanding how a balanced collection could generate the payoff 

gp(B)=Σ T∈BwT v(T), consider again the problem of assigning n students into k Internet chat 

rooms, and treat each v(T) as the payoff per unit of time each chat room Τ receives from 

advertisers, which also can be understood as the number of visits that T receives per unit of 

time.  Then, the total payoff generated by a balanced assignment (B, w) is equal to 

gp(B)=Σ T∈BwT v(T), which is equal to the sum of individual payoffs under the equal-share 

rule.6  The following example illustrates such generated payoffs and the irrationality of 

splitting v(N) in games with mgp > v(N). 

Example 1 (Internet Assignment Problem): n= 3, v(1) = v(2)= v(3)=0, v(12) = 

v(23) = v(13) = v(123)= $1000.  The five minimal balanced collections (excluding {N}) are 

the four partitions and B5 = {12, 13, 23} with a balancing vector {0.5, 0.5, 0.5}.  By (5), mgp 

= gp(B5) = $1500.  The revenue of opening the grand chat room N = {1,2,3} for 100 minutes 

is $1000, and the revenue of opening each of the two-member chat rooms for 50 minutes is 

mgp = $1500 > v(N) = $1000.  Hence, it is irrational to split v(N) = $1000 in this game, 

because they could split mgp = $1500. 

Readers could treat Example 1 as the voting game after dividing each v(S) by 1000 

and could predict that a player will form an alliance with each of the other two players for 

half of the time.  This can be completed through a dynamic or virtual process in which a 

                                                 
6  Under the equal-share rule, each student i∈T receives v(T)/|T| per unit of time by participating in chat 

room T.   Because each chat room T in B  is opened for wT units or percentage of the time, i’s payoff from (B, 

w) is equal to v(i,B) = ΣT∈B(i)wT v(T)/|T|, and the sum of these payoffs are Σi∈N v(i,B) = Σi∈NΣT∈B(i)wTv(T)/|T| = 

ΣT∈BwTΣi∈Tv(T)/|T| = ΣT∈B wTv(T) = gp(B). 
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player is able to spend one half of his life before (or after) the game or spend two halves of 

his life simultaneously.  Although imaginative, such a process is consistent with empirical 

evidence.  In China’s three-kingdom period (220-280 A.D.), for example, two players (Wei 

and Wu) lived long before the famous three-kingdom game was played.  

Denote the maximal (or optimal) set for the above (5) as B0 given below:   

(7) B0 = B0 (Γ) = {B∈B| gp(B)= mgp} = Arg-Max{gp(B)|B∈B}. 

For each maximal collection B∈B0 with its unique balancing vector w, it will generate the 

game’s mgp when each T∈B  is formed for wT units (or percentage) of the time. 

Note that computing the above mgp is not an easy task for a large n, because the 

number of minimal balanced collections is much larger than the Bell number (i.e., the 

number of all partitions).7  However, as shown in Theorem 1 below, one can obtain mgp by 

solving the simpler minimization problem (4) instead of solving (5), because the two 

problems are dual to each other. 

Theorem 1: Given game (1), the maximization problem (5) for mgp is dual to the 

minimization problem (4) for mnbp, so mgp = mnbp holds.   

Theorem 1 is proved in the appendix.  Theorem 1 leads directly to three equivalent 

core theorems given below: 

Theorem 2: Given game (1), let its core, mnbp, and mgp be given in  (2), (4), and (5), 

respectively.  Then, c(Γ) ≠ ∅  is equivalent to each of the following three claims:  

(i) the game is balanced (Bondareva [1962], Shapley [1967]); 

(ii)  mnbp(Γ)≤ v(N) (Zhao [2001]); and 

                                                 
7   Peleg (1965) provides an algorithm for finding all minimal balanced collections.  The Bell number (i.e., the 

number of all partitions) is the sum of Sterling numbers of the second kind.  For n = 1, 2, …, 11, their Bell 

numbers are, respectively: 1, 2, 5, 15, 52, 203, 877, 4140, 21,147, 115,975, 678,570. 
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  (iii) v(N) ≥ mgp(Γ). 

To summarize, there are now three necessary and sufficient empty-core arguments:  

the game is unbalanced, v(N) is below mnbp, and it is irrational to split v(N).  This indicates 

that previous results for splitting v(N) will be irrational whenever the core is empty, and it 

suggests the need to modify all previous studies on splitting v(N), including the more than 10 

chapters on core and values in the handbook of game theory (Aumann and Hart [1992]).  In 

particular, it discourages any future research on core enlargements such as the stable set, the 

bargaining set, and ε-core, because such splits of v(N) violate players’ rationality.  

4.   The Maximal Payoff and Coalition Formation in Coalitional TU Games 

The previous section shows that rational players will not split v(N) in games with an 

empty core.  Then, what payoffs will rational players split in games with an empty core?  We 

propose that they will split the maximal payoff defined below:  

Definition 2:  The maximal payoff (mp) for game (1) is given by 

(8) mp = mp(Γ) = Max {mgp, v(N)}, 

where mgp = mgp(Γ) is the maximum of generated payoffs given in (5).    

It is straightforward to see that mp = v(N) if c(Γ) ≠ ∅, = mgp > v(N) if c(Γ) = ∅.  

Because it is rational to split v(N) = mp if c(Γ) ≠ ∅, and mgp = mp >v(N) if c(Γ) = ∅, 

rational players will always split a game’s maximal payoff given in (8), and this answers the 

question of what payoffs will be split. As shown in Example 1, our three students will split 

the game’s maximal payoff of mp = $1500, instead of v(N) = $1000.  

Next, consider the question of how to split the maximal payoff. Let the optimal set 

for mnbp in (4) be denoted as Y given below:   



 10

(9) Y = Y(Γ) = Arg-Min{Σi∈Nxi | x∈Rn
+, Σi∈S xi

 ≥ v(S) for all S≠N}, 

which is the set of splits of mgp (i.e., Σxi = mnbp = mgp) that possibly can be blocked only 

by the grand coalition N, because each x ∈ Y(Γ) satisfies the rationality for all S≠N and all B 

∈B.  Given x∈ Y(Γ), its stability falls into the following three cases: 

Case 1.  mgp > v(N), or c(Γ) = ∅.  In this case, x is stable against all deviations, 

because no coalition S (including N) or any minimal balanced collection B can block it.   

Case 2.  mgp = v(N), or c(Γ) ≠ ∅ and Int c(Γ) = ∅, where Int c(Γ) is the (relative) 

interior of the core.  In this case, x also is stable against all deviations, because Y(Γ) = c(Γ). 

Case 3.  mgp < v(N), or Int c(Γ) ≠ ∅.  In this case, x is clearly unstable because it 

violates the grand coalition’s rationality (i.e., Σxi = mgp <v(N)). 

The above discussions indicate that the set of stable splits of mp is equal to the 

optimal set Y(Γ) if mgp = mnbp > v(N), and the core if mgp = mnbp≤ v(N).   

Finally, consider the question of what coalitions will be formed.  Because rational 

players will split the game’s maximal payoff, coalitions formed by rational players will 

support the maximal payoff.  By the above properties of mp, rational players will form the 

grand coalition if v(N) ≥ mgp = mnbp and the minimal balanced collections in B0 in (7) if 

v(N) < mgp = mnbp.  The unique balancing vector for the formed minimal collection 

answers the question of how long will each of these coalitions be formed. 

The next theorem summarizes the above answers.    

Theorem 3:  Given game (1), let its mgp and mp be given in (5) and (8), c*= 

c*(Γ) ≠ ∅ denote the set of rational splits of mp, and B* = B*(Γ)  ≠ ∅  denote the set of stable 

collections that will be formed.  Then, the following three claims hold:  

(i) rational players will split the maximal payoff mp = mp(Γ);  
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(ii) the set of rational splits of mp is given by   

(10) c*(Γ) = 


   c(Γ)  if v(N) = mp(Γ);

  Y(Γ)  if v(N) < mp(Γ);
 

where c(Γ) and Y(Γ) are given respectively in (2) and (9); and 

(iii) the set of stable collections of coalitions that will be formed is given by   

(11) B*(Γ) = 



      {N}          if v(N) = mp(Γ) > mgp(Γ);

 {N}∪B0(Γ)   if v(N) = mp(Γ) = mgp(Γ);

    B0(Γ)          if v(N) < mp(Γ) = mgp(Γ);

 

where B0(Γ) is given in (7); and for every B ∈B*(Γ) with its unique balancing vector w, each 

coalition T∈B  will be formed for wT unit (or percentage) of the time.   

Observe that c*(Γ) ≠ ∅ always holds, so there always exists a split of the maximal 

payoff that is unblocked by any coalition or any balanced collection.  It might be useful to 

call c*(Γ) in (10) the new core as compared with the old core c(Γ) in (2).  In the old core, 

players split v(N) and only rule out deviations by each coalition, whereas in the new core, 

players split the maximal payoff and rule out not only deviations by each coalition, but also 

simultaneous deviations by each minimal balanced collection.  In the Internet assignment 

game of Example 1, our three students will form each of the two-member chat rooms for 50 

minutes and each will receive $500; such a split is stable against all possible deviations.   

5.  Extension to Conational NTU Games 

This section answers the questions of what subset of payoffs from which players will 

choose, how players choose a payoff vector, what coalitions will form, and how long each of 

these coalitions will be formed in coalitional NTU games.  Due to the generality of non-

transferable utilities, some of these NTU results are weaker than the corresponding TU 

results.  In particular, conditions for a non-empty NTU core are only sufficient but not 
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necessary.  

A coalitional NTU game, or an NTU game in characteristic form, is defined as  

(12) Γ = {N, V(.)}, 

which specifies a non-empty set of payoffs, V(S)⊂ RS, for each S∈N, where RS is the 

Euclidean space whose dimension is the number of players in S and whose coordinates are 

the players in S.  For each S∈ N, let the (weakly) efficient set of V(S) be given as 

∂V(S)  = { y∈V(S) | there is no x ∈ V(S) such that x>>y},  

where vector inequalities are defined as below:  x ≥ y  ⇔  xi ≥ yi,  all i;  x > y ⇔  x ≥ y and x 

≠ y; and x >> y ⇔ xi > yi, all i. 

Scarf (1967b) introduced the following two assumptions for (12): (i) each V(S) is 

closed and comprehensive (i.e., y∈V(S), u∈RS and u ≤ y imply u∈V(S)); (ii) for each S, 

{y∈V(S)|yi≥ ∂V(i)>0, all i∈S} is non-empty and bounded.  It is useful to note that ∂V(i) = 

Max {xi | xi∈V(i)}.  One can check that part (ii) is satisfied in Example 2 (given after 

Definition 3 in this section).  Under these assumptions, each ∂V(S) is closed, non-empty, and 

bounded from above.   

Given S∈ N, a payoff vector u∈ Rn
+ is blocked by S if there is y∈ V(S) such that y >> 

uS (i.e., uS∈V(S)\∂V(S)), or in words, if S can obtain a higher payoff for each of its members 

than that given by u.  A payoff vector u∈∂V(N) is in the core if it is unblocked by all S ≠ N, 

so the core of (12) can be given as 

(13) C(Γ)  = { u∈∂V(N) | uS∉V(S)\∂V(S), all S≠N }. 

We now define the concept of a balanced NTU game (Scarf [1967b]) geometrically.  

For each S ≠ N, let ~v(S) = V(S)×R−S⊂ Rn denote the n-dimensional cylinder with V(S), where 
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R−S = ∏i∈Ν\SR
i.  Then, the set of payoffs generated by a minimal balanced B, and the set of 

generated payoffs can be defined as below: 

 Definition 3:  Given a minimal balanced B ∈ B, the payoffs generated by B and the 

set of generated payoffs in (12) are given, respectively, as 

(14) GP(B) =    ∩
S∈B

~v(S)  ⊂ Rn, and 

(15) GP = GP(Γ) =    ∪
B∈BGP(B), 

where B is the set of minimal balanced collections (excluding N) given in (6). 

Note that (14) becomes GP(B) = ∏S∈B V(S) when B is a partition.  Similar to the TU 

case, (15) covers only minimal balanced collections because non-minimal ones are the 

unions of minimal ones.  Readers are encouraged to visualize the generated payoffs in 

Example 2 below, whose non-negative parts are illustrated in Figure 1.  

Example 2: n = 3, V(i)= {xi | xi ≤ 1}, i = 1, 2, 3; V(12)= {(x1, x2) | (x1, x2)≤ (3,2)}, 

V(23) = {(x2, x3) | (x2, x3)≤ (2,3)}, V(13) = {(x1, x3) | (x1, x3)≤ (2,2)}, and V(123) = V(N) = 

{x|x1+x2+x3≤  7}.  For the five minimal balanced collections, B1= {1, 2, 3}, B2 = {12, 3}, B3 

= {23, 1}, B4 = {13, 2}, and B5 = {12, 13, 23}, their generated payoffs are:  GP(B1) = {x|x≤ 

(1,1,1)}; GP(B2) = {x|x≤ (3,2,1)}; GP(B3) = {x|x≤ (1,2,3)}; GP(B4)= {x|x≤ (2,1,2)}; and 

GP(B5) = {x|x≤ (2,2,2)}. 

Now, the NTU game (12) is balanced if  

(16) GP(Γ)⊂ V(N) 

holds, where GP(Γ) is the generated payoffs in (15), or in words, (12) is balanced if for each 

balanced B, u∈V(N) must hold if uS∈V(S) for all S∈B.  To understand a balanced game 

geometrically, visualize that one is flying in a jet above the Rocky Mountains, and treat the 

generated payoffs as peaks of the mountains and V(N) as clouds.  Then, a game is balanced if 
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one sees only clouds (i.e., GP(Γ)⊂ V(N), see Figure 2a) and unbalanced if one sees at least 

one peak above the clouds (i.e., GP(Γ)⊄ V(N), see Figure 2b).  
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Figure 2a shows V(N) and the generated payoffs in Example 2.  Because one sees 

only clouds, the game is balanced.  Let V(N) be reduced to V(123) = {x|x1+x2+x3≤5} and all 
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other V(S) remain unchanged.  Then, as shown in Figure 2b, because the three peak points a, 

b,  and c are above the clouds or the simplex X(5) = {x∈ R3
+|Σ xi

 = 5}, the game now becomes 

unbalanced. 

Note that the minimal balanced collection B5 = {12, 13, 23} in Example 2 generates 

new payoffs that are outside of those generated by the four partitions (i.e., the unit cube next 

to [2, 1, 2] and on the same level; see the difference between [e] and [f] in Figure 1).  Similar 

to Example 1, players could achieve such new generated payoffs in GP(B5) by forming each 

of the two-member coalitions for half of the time.  Needless to say, it is the discovery of such 

new generated payoffs (or the maximum of generated payoff in Example 1) that gives rise to 

the coalition formation theory introduced in this paper. 

Definition 4 below extends the concept of mnbp in (4) to minimum no-blocking 

frontier (MNBF), and mgp in (5) to (weakly) efficient generated-payoffs (EGP).  Recall that 

a payoff vector u is unblocked by S if uS∉V(S)\∂V(S) or if u∈[V(S)\∂V(S)]C×R−S⊂ Rn, where 

superscript C denotes the complement of a set.   Let    

(17) UBP = UBP(Γ) =    ∩
S ≠ N{[V(S)\∂V(S)]C×R−S}⊂ Rn, 

denote the set of payoff vectors that are unblocked by all S ≠ N.  Then, the core or (13) 

becomes C(Γ)=∂V(N)∩UBP, and the concepts of MNBF and EGP can be defined below.    

 Definition 4: Given game (12), let its GP and UBP be given in (15) and (17).  Let 

MNBF denote its minimum no-blocking frontier and EGP its efficient generated-payoffs.  

Then,  MNBF and EGP are given by  

(18)  MNBF = MNBF(Γ) = { y∈UBP |  no x ∈ UBP such that x<<y}, and 

(19)  EGP =EGP(Γ)=∂GP(Γ)= {y∈GP|  no x∈ GP such that x>>y}. 

By (18), MNBF is the lower boundary or the minimum weakly efficient set of UBP.  
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Any payoff vector on (or above) this boundary is unblocked by all S≠N, this is analogous to 

the TU result that any solution of (4) given in (9) is unblocked by all S ≠  N.  By (19), EGP  

is the upper boundary of GP.  It will be irrational to choose any y∈V(N) if y is below this 

boundary; this is analogous to the TU result that it is irrational to split v(N) < mgp.  Let  

(20)  Z = Z(Γ) = MNBF∩ EGP 

denote the set of unblocked and efficient generated-payoffs.  The next theorem shows that Z 

≠ ∅  always holds, which is the NTU counterpart of mgp = mnbp in Theorem 1.  

Theorem 4: Given game (12), let Z = Z(Γ) be given in (20).  Then, Z ≠ ∅.   

It is straightforward to see that EGP* = {{1, 2, 3}; {2, 2, 2}; {3,2,1}} in Example 2.8  

One can check that none of these three vectors is blocked, so MNBF∩EGP≠ ∅  holds in the 

example.  

Theorem 4 is proved by a version of Scarf’s closed covering theorem (1967a) due to 

Zhou (1994).  Recall that EGP⊆ V(N) holds in balanced games. By MNBF⊂UBP, Z = 

MNBF∩EGP ≠ ∅ leads directly to C(Γ)= ∂V(N)∩UBP ≠ ∅  in balanced games.  Hence, our 

proof of Theorem 4 implies a new proof of Scarf’s core theorem.   

Now, consider the rationality of choosing a payoff vector from V(N).  Similar to the 

irrationality of splitting v(N) in TU games with v(N) < mgp, it will be irrational to choose 

u∈ V(N) if V(N)⊂ GP\∂GP (i.e., if there is B∈ B and v∈ GP(B) such that v>>u), and rational 

to choose u∈ V(N) if GP⊆ V(N) (i.e., if the game is balanced).  Using our geometric 

interpretation, it is irrational to choose u∈ V(N) if one sees no clouds (V(N)⊂ GP\∂GP) and 

                                                 
8   EGP* is the efficient set given by EGP* = {y∈GP| no x∈GP such that x >y} ⊆ EGP, which is a 

refinement of the weakly efficient set EGP defined in (19). 
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rational to choose u∈V(N) if one sees no peaks (GP⊂ V(N)). 

However, unlike in TU games where either v(N) < mgp or v(N) ≥  mgp holds, it is 

possible in NTU games that neither V(N)⊂ GP\∂GP nor GP⊂ V(N) holds, or that one sees 

both clouds and peaks.  The existence of such unbalanced games with V(N)⊄ GP\∂GP is 

what makes the following NTU core results weaker than the corresponding TU core results 

in Theorem 2.    

Theorem 5: Given Γ in (12), let its core, GP and MNBF be given in (13), (15) and 

(18) respectively.  Then, the following three claims hold:  

 (i) C(Γ) ≠ ∅  if GP⊂ v(N) (Scarf [1967b]); 

(ii) C(Γ) = ∅  if v(N) ⊂  GP\∂GP; and 

  (iii) C(Γ) ≠ ∅ ⇔  there exists x∈∂v(N) and y∈ MNBF such that x ≥ y. 

Comparing Theorem 5 with Theorem 2 leads to the following two differences and 

one similarity between NTU and TU core results: i) balancedness is only a sufficient 

condition for NTU core existence (Scarf [1967b]), and a necessary and sufficient condition 

for TU core existence (Bondareva [1962], Shapley [1967]); ii) the irrationality of choosing 

from V(N) is only a sufficient condition for an empty NTU core, whereas the irrationality of 

splitting v(N) is a necessary and sufficient condition for an empty TU core; and iii) “V(N) has 

a payoff vector on or above MNBF” is a necessary and sufficient condition for NTU core 

existence, and “v(N) ≥ mnbp” is a necessary and sufficient condition for TU core existence 

(Zhao [2001]).  As with the TU case, the irrationality of choosing u∈ V(N) ⊂ GP\∂GP 

suggests the need to modify previous studies on NTU games with an empty core. 

The NTU counterpart of a TU game’s maximal payoff in (8) is the following concept 

of efficient payoffs:   
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   Definition 6:  The set of efficient payoffs (EP) for our NTU game (12) is given by 

(21) EP = EP(Γ)=∂ (GP∪v(N))= {y∈GP∪v(N) |  no x∈GP∪v(N) with x>>y}, 

where GP = GP(Γ) is the generated payoff given in (15).    

Recall that players in a TU game will always split the maximal payoff defined in (8).  

Similarly, players in a NTU game will always choose from the set of efficient payoffs 

defined in (21). This answers the question of what subset of payoffs from which players will 

choose.   

Next, consider the question of how to choose a payoff vector from EP.   Let 

(22) D0 = D0(Γ)= {B∈B| GP(B) ∈ Z(Γ)} 

denote the set of minimal-balanced collections that support Z(Γ) in (20).  For each B∈ D0 

with its balancing vector w, it will generate the efficient generated-payoffs in GP(B) ∈ Z(Γ) 

when each T∈B  is formed for wT percentage of the time.  As with the TU case, each payoff 

vector y∈ Z(Γ) (i.e., y∈ GP(B) for some B∈ D0) can possibly be blocked only by the grand 

coalition N, because the payoff vector y satisfies the rationality for all S≠N and all B ∈B.  

Hence, y∈ Z(Γ) is stable if and only if y∉V(N)\∂ V(N).  It will be useful to consider the 

stability of each y∈ Z(Γ) in the following three cases.   

Case 1. V(N)⊂ GP.  In this case, it is impossible to have y∈V(N)\∂ V(N), so y is stable 

against deviations by all S⊆ N and all B∈ B.   

Case 2.  GP⊂ V(N).  In this case, y is unstable if y∉∂V(N) (because it will be blocked 

by N), and stable if y∈∂V(N).    

Case 3.  V(N)⊄ GP and GP⊄ V(N).  This case is what makes NTU results different 

from TU results.  The stability of y depends on whether C(Γ) ≠ ∅.  If C(Γ) = ∅, y is stable 
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because N can not block it (otherwise, C(Γ) ≠ ∅  holds); if C(Γ) ≠ ∅, the stability of y is 

similar to Case 2: y is unstable if y∈V(N)\∂ V(N), and stable if y∉V(N)\∂ V(N). Note that 

y∈ V(N) might not hold in Case 3, but it always holds in Case 2. 

The above discussions indicate that the set of stable payoffs in EP is Z(Γ) in Case 1, 

C(Γ) in Case 2, C(Γ)∪{Z(Γ)∩[V(N)\∂ V(N)]C} in Case 3 with C(Γ) ≠ ∅, and Z(Γ) in Case 3 

with C(Γ) = ∅. 

Finally, consider the question of what coalitions will be formed. By earlier 

arguments, rational players will choose from the set of efficient payoffs in (21), so coalitions 

formed by rational players shall be either the grand coalition N or the minimal balanced 

collections from D0(Γ) in (22), which support those efficient payoffs in (21) that are also 

stable.  As with the TU case, the unique balance vector associated with each minimal 

balanced collection answers the question of how long each of these coalitions will be formed.  

The next theorem summarizes the above answers.    

Theorem 6:  Given game (12), let Z(Γ) and EP(Γ) be given in (20) and (21), C*= 

C*(Γ) ≠ ∅ denotes the set of stable payoffs from EP(Γ), and D*= D*(Γ) ≠ ∅ denotes the set 

of minimal balanced collections that will be formed.  Then, the following claims hold:  

(i) rational players will choose from the efficient payoffs in EP(Γ);  

(ii) the set of stable payoff vectors in EP(Γ) is given by   

(23)       C*(Γ) = 



     C(Γ)            if  GP⊂ V(N); 

 C(Γ)∪Z(Γ)*   if V(N)⊄ GP; GP⊄ V(N); C(Γ) ≠ ∅;

     Z(Γ)            if V(N)⊄ GP; GP⊄ V(N); C(Γ) = ∅; or if V(N)⊂ GP;

 

where Z(Γ)* = Z(Γ)∩[V(N)\∂ V(N)]C, and C(Γ) is the core given in (13);  

(iii) the set of stable collections of coalitions that will be formed is given by   
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(24)        D*(Γ) = 



     {N}           if  GP⊂ V(N); 

{N}∪D1(Γ)    if V(N)⊄ GP; GP⊄ V(N); C(Γ) ≠ ∅;

     D0(Γ)        if V(N)⊄ GP; GP⊄ V(N); C(Γ) = ∅; or if V(N)⊂ GP;

  

where D1(Γ)= {B∈D0(Γ)|GP(B)∈ Z(Γ)*}, D0(Γ) and Z(Γ)* are given in (22) and (23). 

Observe that C*(Γ) ≠ ∅ always holds, so there always exists an efficient payoff that is 

unblocked by any coalition or any balanced collection.  Such difference between the new 

core C*(Γ) in (23) and the old core C(Γ) in (13) is the consequence of the possible new 

generated payoffs.  In the old core C(Γ), players just choose from V(N) and only rule out 

deviations by each coalition.  In the new core C*(Γ), players also explore the possible higher 

payoffs generated by minimal balanced collections, choose from the game’s efficient 

payoffs, and rule out not only deviations by each coalition, but also simultaneous deviations 

by each minimal balanced collection.      

6.  Conclusion and Discussion 

The above analysis revealed the possibility that players in a coalitional game 

sometimes could achieve better payoffs than the grand coalition’s payoffs by forming a 

minimal balanced collection of coalitions.  Our exploration of such opportunity led to the 

concepts of maximal payoff (mp) and efficient payoffs (EP) in TU and NTU games, which 

will be better than the grand coalition’s payoff if and only if the core is empty.   

In addition to the new core argument, the exploration led to the following four 

conclusions: i) players will achieve the game’s mp (EP) in TU (NTU) games; ii) the set of 

stable payoffs is equal to the core if the core is non-empty and is equal to the optimal set of 

mnbp (the set of unblocked and efficient generated-payoffs) in TU (NTU) games if the core 

is empty; iii) players will form those coalitions in a minimal balanced collection that support 
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the game’s mp (EP) in TU (NTU) games; and iv) the unique balancing vector for the minimal 

balanced collection determines the length (or percentage) of time in which each of the 

coalitions will be formed. 

The irrationality of achieving the grand coalition’s payoff in games with an empty 

core suggests the need to modify previous results for splitting v(N) (or choosing from V(N)).  

Among such a long list of future studies, readers are encouraged to investigate the properties 

of the following values and refinements of the new core: i) modified Shapley value: 

replacing v(N) with mp in Shapley (1953); ii) modified nucleolus: replacing v(N) with mp in 

Schmeidler (1969); iii) quasi-Shapley value: the vector in c*(Γ) that has the shortest distance 

between c*(Γ) and the modified Shapley value; iv) modified dual nucleolus: the 

lexicographical maximizer of the ascending excess vector on c*(Γ); and v) extensions of (i-

iv) to coalitional NTU games.  Note that (ii-iv) are different core selections.  

  
Appendix 

Proof of Theorem 1:   For each S≠N, let eS = (e1, …, en)′∈ Rn
+ be its incidence vector or the 

column vector such that ei = 1 if i∈S and ei = 0 if i∉S, and e = eN = (1, …, 1)′  be a column 

vector of ones.  Then, the dual problem for the minimization problem (4) is the following 

maximization problem:  

(25) Max  {ΣS≠NyS v(S) | yS ≥ 0 for all S≠N; and ΣS≠NyS eS ≤  e}. 

We will show that (25) is equivalent to the maximization problem (5).  First, we show 

that the inequality constraints in (25) can be replaced by equation constraints. 

Let Ay≤ e and y≥0 denote the constraints in (25), where y is the (2n-1) dimensional 

vector whose indices are the coalitions, and A = An×(2
n

-1) = [eS | S≠Ν ] is the constraint matrix; 
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let the rows of A be a1, …, an.  For each feasible y, let T = T(y) = {i | ai⋅y <1} be the set of 

loose constraints, so N\T = {i | ai⋅y =1}  is the set of binding constraints.   

If T(y) ≠ ∅, let z be defined as:  zS = yS+(1- ai⋅y) if S = {i}, for each i∈T, and zS = yS 

if S ≠ {i} for all i∈ T.  One sees that z > y and T(z) =∅.  Hence, for any y with T(y) ≠ ∅, 

there exists z≥0, Az= e such that ΣS≠NyS v(S)≤   ΣS≠NzS v(S).  This shows that the feasible set 

of (25) can be reduced to {z | z≥0, Az= e}, without affecting the maximum value.  So the 

maximization problem in (25) is equivalent to the following problem:   

(26) Max  {ΣS≠NyS v(S) | Ay = e, and y ≥ 0 }. 

Note that for each feasible y in (26),  B(y) = {S | yS > 0} is a balanced collection.  Next, 

we establish the one-to-one relationship between the extreme points of (26) and the minimal 

balanced collections.  Let y be an extreme point of (26); we will show that B(y) = {S | yS > 0} 

is a minimal balanced collection.   

Assume by way of contradiction that B(y) is not minimal, then there exists a balanced 

subcollection B’⊂ B(y) with balancing vector z.  Note that zS > 0  implies  yS > 0.  Therefore, 

for a small t > 0 (e.g., 0 < t ≤ ½, and t ≤ Min {yS /(zS -yS) | all S with  yS< zS}), one has 

w = y – t(y-z) ≥ 0, w’ = y + t(y-z) ≥ 0.   

Ay = e and Az = e lead to Aw = e and Aw’ = e.  But y = (w+w’)/2 and w ≠ w’ contradict the 

assumption that y is an extreme point.  So B(y) must be minimal.   

Now, let B = {T1, ..., Tk} be a minimal balanced collection with a balancing vector z.  

We will show that z is an extreme point of (26).  Assume again by way of contradiction that 

z is not an extreme point, so there exists w ≠ w’ such that z = (w+w’)/2.  By w≥ 0 and w’≥ 0, 

one has 
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{S | wS >0} ⊆ B ={S | zS >0}, and {S | w 'S >0} ⊆ B ={S | zS >0}. 

The above two expressions show that both w and w’ are balancing vectors for some 

subcollections of B.  Because B is minimal, one must have w = w’ = z, which contradicts w ≠ 

w’.  Therefore, z must be an extreme point of (26).           

Finally, by the standard results in linear programming, the maximal value of (26) is 

achieved among the set of its extreme points, which are equivalent to the set of the minimal 

balanced collections, so (26) is equivalent to Max {ΣS∈B ySv(S)}, subject to the requirements 

that N∉ B and B is a minimal balanced collection with the balancing vector y.   This shows 

that (25) is equivalent to the maximization problem (5) for mgp, which completes the proof 

for Theorem 1.         Q.E.D 

Proof of Theorem 2:   It follows from Theorem 1 and the known results in Bondareva 

(1962), Shapley(1967), and Zhao (2001).       Q.E.D 

Proof of Theorem 3:   The discussion between Definition 2 and the theorem serves as a 

proof of the theorem.          Q.E.D 

Our proof for Theorem 4 uses the following lemma on open covering of the simplex 

∆N = X(1) = {x∈ Rn
+|Σ i∈Nxi

 = 1}. 

Lemma 2 (Scarf [1967a], Zhou [1994]):   Let {CS}, S≠N, be a family of open subsets 

of ∆N that satisfy ∆N\{i}={x∈∆N | xi
 = 0}⊂C{i} for all i∈N, and ∪S≠NCS = ∆N, then there exists 

a balanced collection of coalitions B such that ∩S∈ BCS ≠ ∅. 

Proof of Theorem 4:   Let UBP be the set of unblocked payoffs in (17), and EGP be the 

boundary or (weakly) efficient set of the generated payoff in (19).  We shall first show that 

UBP∩ EGP ≠ ∅.   
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For each coalition S≠ N, let WS = {Int V(S)×R−S}∩EGP be an open (relatively in 

EGP) subset of EGP, where Int V(S) = V(S)\∂V(S) is the interior of V(S).  For each minimal 

balanced collection of coalitions B, we claim that   

(27)  ∩S∈ BWS = ∅ 

holds.  If (27) is false, there exists y∈ EGP and y∈ Int V(S)×R−S for each S∈ B.  We can now 

find a small t >0 such that y+te∈ Int V(S)×R−S for each S∈ B, where e is the vector of ones.  

By the definition of (14) and (15), y+te∈ GP(B) = ∩S∈ B{V(S)×R−S}⊂  GP, which contradicts 

y∈ EGP.  This proves (27). 

Now, suppose by way of contradiction that UBP∩ EGP = ∅.  Then, EGP⊂  UBPC, 

where superscript C denotes the complement of a set.  The definition of WS and    

UBPC = {∩S≠N{[V(S)\∂V(S)]C×R−S}}C =∪S≠N{Int V(S)×R−S} 

together lead to ∪S≠NWS = EGP, so {WS}, S≠N, is an open cover of EGP.  

 Because the set of generated payoffs is comprehensive and bounded from above, and 

the origin is in its interior (by ∂V(i)>0, all i), the following mapping from EGP to ∆N:  

  f: x → x/Σ xi, 

 is a homeomorphism.  Define CS = f(WS) for all S⊆ N, one sees that {CS}, S≠N, is an open 

cover of ∆N = f(EGP). 

For each i∈N, ∂V(i)>0 leads to EGP∩ {x∈Rn | xi =0}⊂ W{i} , which in turn leads to 

∆N\{i}={x∈∆N | xi
 = 0} = f(EGP∩ {x∈Rn | xi =0}) ⊂ C{i} = f(W{i}).  Therefore, {CS}, S≠N, is 

an open cover of ∆N satisfying the conditions of Scarf-Zhou open covering theorem, so there 

exists a balanced collection of coalitions B0 such that ∩ S∈B0 CS ≠ ∅, or that 
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(28)  ∩ S∈B0 WS ≠ ∅, 

which contradicts (27).  Hence, UBP∩ EGP ≠ ∅.   

For each x∈ UBP∩EGP, we claim x∈ MNBF.  If this is false, we can find a small 

τ >0 such that x-τe∈UBP.  Let B∈ B be the minimal balanced collection of coalitions such 

that x ∈ GP(B) = ∩S∈ B{V(S)×R−S}.  Then, x-τe ∈ Int V(S)×R−S for each S ∈ B, which 

contradicts x-τe ∈ UBP.   Therefore, MNBF∩EGP = UBP∩EGP ≠ ∅ .       Q.E.D  

Proof of Theorem 5:   It follow from the discussions preceding the theorem.    Q.E.D  

Proof of Theorem 6:   The conclusions follow from the discussions between Definition 6  

and the theorem.            Q.E.D 
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