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Abstract

Trading at decentralized exchanges (DEXs) requires traders to bid blockchain fees to determine the
execution priority of their orders. We employ a structural vector-autoregressive (structural VAR)
model to provide evidence that DEX trades with high blockchain fees not only reveal more private
information, but also respond more to public price innovations on centralized exchanges (CEXs),
contributing to price discovery. Using a unique dataset of Ethereum mempool orders, we further
demonstrate that high blockchain fees do not result from traders competing with each other on
private or public information. Rather, our analysis lends support to the hypothesis that they bid
high blockchain fees to reduce the execution risk of their orders due to blockchain crowding.



1 Introduction

Decentralized exchanges (DEXs) are trading venues built on public blockchains, and they enable

the trading of digital assets without the need for centralized intermediaries. Since their inception,

DEXs have attracted a sizable trading volume and market share in crypto spot trading. As of May

2022, the market share of DEXs is roughly 15%, and the total trading volume on DEXs reaches at

about $200 billion in May 2022.

DEXs collect and process orders through public blockchains. As a result, order execution on

DEXs has two features distinct from that of centralized exchanges (CEXs) running a central limit

order book (CLOB): first, orders are processed in discrete batches by blockchain validators; sec-

ond, traders have to bid a blockchain fee (e.g., gas fee for Ethereum blockchain1) when submitting

their orders. The blockchain fees determine the execution priority of orders because validators

execute received orders based on blockchain fees, from high to low.

Compared with traditional CLOB markets where each order has two main components: price

and trading size, an order on DEXs features an additional third component: blockchain fee. It is a

natural question to ask whether the blockchain fee, which reflects traders’ willingness to execute

their trades timely, conveys any information? If so, does it reveal private information or simply

respond to public information available? Are there any plausible economic channels that can

explain the information content of blockchain fees?

To answer the above questions, we construct a data set that consists of executed trade data of

Uniswap (the largest DEX) and Binance (the largest CEX) and tick-by-tick mempool data on the

Ethereum blockchain. We focus on the eight most traded token pairs during our sample period

between November 1, 2020, and March 24, 2021. With the executed trade data, we use a structural

vector-autoregressive (structural VAR) model to investigate the information content of DEX trade

flows with different levels of blockchain fee. The proprietary tick-by-tick mempool data tracks all

orders submitted to the Ethereum network, as well as the gas fee bid by submitters. Thus, it allows

1In the rest of the paper, we use blockchain fee and gas fee interchangeably as we focus on the Ethereum
blockchain.

1



us to identify potential competition among traders by examining whether they raise the blockchain

fees to outbid their competitors and get their pending orders executed first.

Our main findings are summarized below. First of all, we find that DEX trades with high

blockchain fees reveal private information, and more so compared with DEX trades with low

blockchain fees: for token pairs involving a non-stable coin (e.g., Ethereum and Bitcoin), a shock to

high-blockchain-fee DEX trade flow leads to a much larger permanent impact on market price than

that to low-blockchain-fee trade flow. For example, for NonStable-NonStable token pairs (such as

Bitcoin-Ethereum) where prices are most affected by fundamental value shocks, a positive shock of

one standard deviation to the high-blockchain-fee DEX trade flow results in a permanent increase

of about 6.5 basis points in market price. In contrast, a shock of the same size to low-blockchain-

fee DEX trade flow permanently moves market price by only about 1.74 basis points. The only

exception is DEX trades between two stablecoins (such as USDC-USDT). In such a case, DEX

trades, regardless of the blockchain fee level, do not convey any private information, because the

efficient exchange rate of two stablecoins is common knowledge and fixed at one.

In addition to being more privately informed, DEX trades with higher blockchain fees are

found to be more responsive to market price innovations on CEXs. Our analysis shows that a

shock to CEX price results in larger impulse responses of high-blockchain-fee DEX trade flow

compared with low-blockchain-fee DEX trade flow. Take NonStable-NonStable token pairs as

an example. A positive shock of one percentage to CEX price leads to an increase of about two

standard deviations in the high-blockchain-fee DEX trade flow. For DEXs such as Uniswap which

rely on an exogenous bonding curve to determine pricing schedule, the price cannot adjust through

quote revision but has to be changed through trades. DEX trades with high blockchain fees help

update the stale DEX price and make it more efficient, although they respond to public information

already reflected in the quotes of CEX.

Why do privately informed traders and public information arbitrageurs bid high blockchain

fees? A natural answer is that they compete to prioritize their order executions: they consecutively

raise blockchain fees attached to their orders in order to outbid their competitors. Such competition
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arises either due to private information known to multiple informed traders or because of released

public information seen to all. Surprisingly, our analysis of tick-by-tick mempool data shows

that such a “trader competition” channel is unlikely to hold. First, we find that traders rarely

increase their blockchain fee bids: only around 1% of executed orders see their gas fee revised up

in the mempool during the same block. It suggests that the blockchain fee of virtually all orders

is determined ex-ante when they are submitted, and they are not raised subsequently as a result

of competition. Second, we further demonstrate that high-blockchain-fee DEX trades which are

likely to be involved with trader competition are less privately informed and less responsive to

price innovations on CEXs.

Instead, we propose an alternative explanation that is more consistent with our findings: for

both traders trading on their short-lived private information and arbitrageurs trading on newly

released public information, they bid high blockchain fees to avoid execution risks that they can

not perfectly anticipate, such as a surge of other non-trading related transactions on the Ethereum

blockchain. Such a “blockchain crowding” channel is further supported by our finding that high-

blockchain-fee DEX trades are more likely to be profitable as, under competition, trading profits

should be competed away.

Our paper relates to several strands of literature. First, past studies have linked the private infor-

mation contained in trades to their public characteristics2, e.g., block trades versus non-block trades

(Easley and O’Hara, 1987), odd-lot trades versus round-lot trades (O’Hara, Yao, and Ye, 2014),

trades executed on ECNs versus the NASDAQ exchange (Barclay, Hendershott, and McCormick,

2003).3 We contribute to the literature by studying the information content of blockchain fees,

a featuring characteristic of trades executed on DEXs besides price and trade size. As informed

traders on DEXs have to bid blockchain fees to get their orders executed, blockchain fees can

2Other studies use proprietary data and investigate the information content of private trade characteristics e.g.,
HFT trades versus non-HFT trades (Hendershott and Menkveld, 2014)

3A related literature is on the trading strategy of the informed trader(s) in various settings, e.g., a monopolistic
informed trader (Kyle, 1985) or competition among multiple privately informed traders (Holden and Subrahmanyam,
1992; Foster and Viswanathan, 1996; Back, Cao, and Willard, 2000) or impatience of informed traders due to uncertain
timing of the public announcement of the private information (Caldentey and Stacchetti, 2010) or short information
horizon (Kaniel and Liu, 2006).
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potentially serve as a new public signal revealing the private information contained in DEX trades.

Second, our paper further contributes to the nascent yet rapidly growing literature on decen-

tralized exchanges. Few papers have discussed blockchain fees in various contexts. Park (2021)

focuses on the unintended consequence of public blockchain order processing, i.e., all pending

DEX transactions are subject to the risk of “sandwich attack”. He mentions that in theory, liquidity

demanders are able to prevent frontrunning by choosing a very high blockchain fee. Capponi and

Jia (2021) investigates how the choice of DEX pricing rules affects welfare and liquidity provision

incentives. They show that arbitrageurs can always outbid liquidity providers, in blockchain fees

auctions, to exploit the price discrepancy between CEX and DEX, which reduces incentives for

liquidity provision. Barbon and Ranaldo (2021) compares the price efficiency of CEX and DEX.

They argue that the low price efficiency of Uniswap can be partially attributed to high blockchain

fees which are fixed costs for traders. Parlour and Lehar (2021) and Aoyagi and Ito (2021) abstract

away from blockchain fees and focus more on the novel liquidity provision structure of AMMs. A

significant contribution of our work relative to the existing literature is highlighting how blockchain

fees convey both private and public information. In DEX, market price can only be revised through

trading, and it is trades with high blockchains fees that help DEX keep track of efficient prices.

More broadly, our paper relates to the literature on the “arm race” among traders on public

information. Previous papers analyze the issue in the context of traditional central limit order book

(CLOB) markets and they show that its impact on market liquidity ultimately depends on which

trader type is faster: market liquidity worsens if arbitrageurs become faster (Biais, Foucault, and

Moinas, 2015; Budish, Cramton, and Shim, 2015; Foucault, Hombert, and Roşu, 2016), while it

improves if market makers become faster (Hoffmann, 2014; Jovanovic and Menkveld, 2016). The

emphasis on speed lies in the continuous trading nature of the traditional CLOB market so that the

fastest trader will win the race and seize the trading opportunity. In contrast, trading on DEXs runs

in discrete time and thus speed is no longer a determinant factor in winning the races. Instead,

traders compete by bidding blockchain fees, which are public signals to all, in order to get their

orders executed first. We contribute to the literature by focusing on such a unique form of public
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information race on DEXs and analyzing its impact on price efficiency.

The remainder of the paper proceeds as follows: Section 2 introduces the inner workings of the

DEXs and their unique features. Section 3 provides an overview of the dataset. Section 4 details

the empirical methodology. Section 5 shows the results. Section 6 concludes.

2 Institutional background

In this section, we briefly introduce DEXs and characteristics of trade execution on DEXs, with a

focus on blockchain fees.

2.1 DEXs

DEXs are blockchain-based smart contracts. As of July 2022, around 15% crypto spot tradings

occur on DEXs, and Uniswap is the largest DEX which accounts for more than half of the DEX

trading volume (see, Block, 2022). The remaining 85% of crypto spot tradings are executed on

centralized exchanges, and the largest CEX is Binance which takes up more than 75% of the CEX

market share. Different from CEX which utilizes limit order books, most DEXs are in the form of

Automated Market Makers (AMM). In AMMs, liquidity providers are depositors, and the pricing

schedules are determined by some function pre-coded in the smart contract. A more detailed

description of AMMs can be found at Capponi and Jia, 2021.

2.2 Trade execution on DEXs and blockchain fees

DEXs rely on blockchain networks (typically Ethereum) to receive, process, and execute orders.

To execute a trade at a DEX, a trader typically has to first broadcast the transaction details in the

blockchain network and bid a blockchain fee for her order. The transaction details reveal trade

information even before the trade is executed, such as the address of the DEX and the intended

trade size and price. If the transaction is received by a validator, then it will be pending in the
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mempool of that validator. Blockchain fees determine execution priority. If a validator is chosen

to validate the next block, then she will execute the transaction in her mempool in the decreasing

order of blockchain fee bid. Since blocks in a blockchain are produced in discrete time, DEX

orders are also processed discretely in batches. Because each block has a maximum capacity,

transactions with too low blockchain fees will not be included in the block, or they need to wait

for a long time before being executed. Figure 1 depicts the order execution mechanism of DEX.

Figure 1. Trading mechanism on DEXs.

Every transaction broadcasted by a trader is associated with a number called “nonce”. Each

nonce can only be used once and must be used in increasing order. In other words, the first order

of a trader has a nonce “0”, her second order has a nonce “1”, and her N th order has a nonce “N”.

When a trader wants to modify her pending order or increase the blockchain fees bid, she has to

broadcast a new transaction with the same nonce as the pending one and increase the blockchain

fees bid. A validator who receives this new transaction will not execute the old one because a

validator will prioritize transactions with higher blockchain fees, and each nonce can only be used

once by one trader. For the same reason, sending a new transaction with decreased blockchain fee

will never work, because the old transaction with higher blockchain fees will still be executed first.

In the Ethereum blockchain, the blockchain fees are referred to as “gas fees”. The execution

of each transaction costs a fixed amount of computation resource, measured by “gas used”. When
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bidding blockchain fees, Ethereum users specify “gas price”, i.e., how much they are willing to

pay per unit of gas. The total gas fees paid by users as blockchain fees are equal to the gas used

multiplied by the gas price bid. Ethereum validators sort and execute transactions in mempools in

the decreasing order of gas price.

3 Data

In this section, we describe our dataset. In Section 3.1, we introduce our executed trade data, and

our tick-by-tick mempool order data in Section 3.2.

3.1 Executed trade data

Our dataset covers trades executed on Binance and Uniswap for eight most actively traded token

pairs during our sample period, USDC-USDT, DAI-USDT, ETH-USDT, ETH-USDC, ETH-DAI,

WBTC-ETH, LINK-ETH, AAVE-ETH, between November 1, 2020 and March 24, 2021. The

eight token pairs fall into three types respectively: “Stable-Stable” pairs, “Stable-NonStable” pairs,

and “NonStable-NonStable” pairs. “Stable-Stable” pairs include two stablecoins pegged to one

US Dollar (USDC-USDT, ETH-USDT). “Stable-NonStable” pairs include one non-stable token,

which is not pegged to any fiat currency, and one stablecoin (ETH-USDT, ETH-USDC, ETH-DAI).

“NonStable-NonStable” includes two non-stable tokens (WBTC-ETH, LINK-ETH, AAVE-ETH).

Binance trades are publicly available and collected from its website4, while Uniswap trades are

collected through a proprietary node. Below we provide a detailed description of each of the two

datasets.

Uniswap trades Each Uniswap trade contains the hash, the address of the trader, the timestamp

of the block in which the trade is included (to the precision of second), the number of the block in

which the trade is included, the execution position of the trade in that block, gas price, gas used,

4See https://data.binance.vision/?prefix=data/spot/monthly/.
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trade direction indicating whether it is a buy trade or sell trade in terms of the base token5, the

amount of tokens in the liquidity pool before and after the trades, and the amount of tokens that

the trader deposits in and takes out from the liquidity pool.

Based on the amount of tokens in the liquidity pool before a trade, we can compute the prevail-

ing “midquote” just before the trade. For example, if there are y amount of token Y and x amount

of X before the trade, the prevailing midquote is simply the ratio of the amount of two tokens in

the pool, x/y. Note that on AMMs like Uniswap, there are no quotes. Thus, “midquote” is defined

in a broader sense as the hypothetical price for an infinitesimal trade. In addition, based on the

amount of tokens that the trader deposits in and takes out from the liquidity pool, we can compute

the transaction price of the trade. For example, if ∆y amount of token Y is swapped for x amount

of token X, then the transaction price is simply the ratio of the amount of two tokens swapped, i.e.,

∆x/∆y. Last, we use the amount of the base token swapped as the transaction size of the trade, that

is, |∆y|.

Binance trades Each Binance trade record includes a unique identifier for the trade, the times-

tamp (to the precision of millisecond), the transaction price, the transaction size in terms of the

base token, and an indicator for whether the buyer uses a limit order or a market order, which tells

us the direction of a trade: if the buyer uses a market order, then it is classified as a buy trade;

otherwise, it is a sell trade.

3.2 Mempool order data

In addition to executed trade data, we obtain proprietary tick-by-tick mempool order data through

a proprietary node.6 The proprietary node records every new order submission it receives in its

mempool, which either ends up with being executed or left unexecuted. Each order has the follow-

5Note that we follow the convention used for currency pairs in the foreign exchange market and label the first
token appearing in a pair as the base token and the second token as the quote token. For example, for the token pair
ETH-USDT, ETH is the base token and USDT is the quote token.

6The proprietary node and the data are both provided by Prof. Arthur Gervais from Imperial College.

8



ing information: the hash, the timestamp when the order is received by the node (to the precision

of millisecond), address of the trader, nonce, gas price, and the gas limit (i.e. the maximum gas

allowed to be used). Our mempool data covers orders received in the mempool for the eight token

pairs in the period of February 7, 2021 through March 24, 2021. With the mempool data, we can

track the complete history of order revisions, if they occur, before the final order is executed and

turns into a trade. Thus, we are able to see whether the trader bid up the gas price attached to her

order in order to get it executed.

3.3 Summary statistics of executed trades

To have a high-level picture of the liquidity of our sample token pairs, in Table 1, we report sum-

mary statistics of their daily trading volume and number of trades on Uniswap and Binance. There

are several notable observations. First, trading in all eight token pairs is fairly active. For in-

stance, the average daily number of trades (daily trading volume) on Uniswap is 869 (≈ 3.8 million

USD), 8601 (≈ 80 million USD) and 1304 (≈ 34 million USD) for USDC-USDT, ETH-USDT and

WBTC-ETH respectively. Second,

Second, trading activity on Uniswap versus Binance differs significantly across token pairs.

For USDC-USDT, DAI-USDT, and ETH-USDT, trading is much more active on Binance than

Uniswap. For example, the average daily trading volume on Binance is about 107 million USDT

and about 1.24 million ETH for USDC-USDT and ETH-USDT respectively, more than an order

of magnitude larger than that on Uniswap. In contrast, for the rest of token pairs, ETH-USDC,

ETH-DAI, WBTC-ETH, LINK-ETH and AAVE-ETH, trading is more active on Uniswap than

Binance. Take WBTC-ETH as an example. Its average daily trading volume is about 31604 ETH

on Uniswap, much larger than 1684 ETH on Binance.

Then, in Table 2, we report summary statistics of the execution price, gas price and trade size

of Uniswap trades for our eight sample token pairs. First, the average trade size of a Uniswap

trade is fairly large, and is about 4360 USD, 8.42 ETH (≈ 9268 USD), and 24.15 ETH (≈ 26,177
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Table 1. Summary statistics of daily trading statistics on Uniswap and Binance. This table reports, for each token
pair, summary statistics of daily trading volume (TradingVolume) and number of trades (TradeCount) on Uniswap and
Binance respectively.

(a) Stable-Stable token pairs. Trading volume is denominated in thousand USDT.

N Mean SD Min Med Max
Pair

USDC-USDT

TradingVolume-Uniswap 145 3804 2257 364 3885 11641
TradeCount-Uniswap 145 869 351 415 773 3085
TradingVolume-Binance 145 107896 69910 16396 102837 398522
TradeCount-Binance 145 50266 21949 14182 47198 135409

DAI-USDT

TradingVolume-Uniswap 145 1258 1152 54 960 5830
TradeCount-Uniswap 145 494 368 161 352 2068
TradingVolume-Binance 145 12086 10135 694 9946 77831
TradeCount-Binance 145 8279 6782 1211 7071 58558

(b) NonStable-Stable token pairs. Trading volume is denominated in ETH.

N Mean SD Min Med Max
Pair

ETH-USDT

TradingVolume-Uniswap 145 72574 38805 36596 61494 263356
TradeCount-Uniswap 145 8601 1452 6311 8308 16419
TradingVolume-Binance 145 1243663 635988 438952 1052452 4245010
TradeCount-Binance 145 948849 479112 181369 915584 2577496

ETH-USDC

TradingVolume-Uniswap 145 79559 39893 32878 70621 302051
TradeCount-Uniswap 145 7595 1405 4681 7549 13851
TradingVolume-Binance 145 27927 20587 5808 21350 142110
TradeCount-Binance 145 19292 13222 3158 16554 80061

ETH-DAI

TradingVolume-Uniswap 145 54327 69493 9992 39382 746637
TradeCount-Uniswap 145 3834 1353 1591 3547 7786
TradingVolume-Binance 145 8737 8823 245 6529 51489
TradeCount-Binance 145 17390 17435 285 14180 103522

USD) for USDC-USDT, ETH-USDT and WBTC-ETH respectively. Second, gas price attached

to Uniswap trades varies considerably across trades. Take WBTC-ETH as an example. While a

Uniswap trade in WBTC-ETH has an average gas price of 131.37 Gwei (1Gwei = 10−9ETH), its

standard deviation is 474.40, which is more than triple the size of the mean. Such a large variation

can result from either the changing overall crowding level of the Ethereum network or traders’ gas

fee bidding behaviors.
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(c) NonStable-NonStable token pairs. Trading volume is denominated in ETH.

N Mean SD Min Med Max
Pair

WBTC-ETH

TradingVolume-Uniswap 145 31604 21973 6278 26293 139189
TradeCount-Uniswap 145 1304 531 646 1141 3338
TradingVolume-Binance 145 1684 1688 18 1261 9984
TradeCount-Binance 145 6260 6397 92 4503 35191

LINK-ETH

TradingVolume-Uniswap 145 9348 5870 1949 7958 42520
TradeCount-Uniswap 145 920 366 367 873 2682
TradingVolume-Binance 145 4463 2489 1071 3975 13598
TradeCount-Binance 145 11630 7337 2200 11226 43491

AAVE-ETH

TradingVolume-Uniswap 145 6442 4418 819 5595 29936
TradeCount-Uniswap 145 536 277 136 502 1514
TradingVolume-Binance 145 1876 1381 348 1546 10143
TradeCount-Binance 145 6272 4708 1075 5322 36964

4 Methodology

To examine whether DEX trades with a higher blockchain fee are more informative, we follow

Hasbrouck (1991a) and estimate a structural vector-autoregressive (structural VAR) model. In the

structural VAR model, we include CEX return and DEX trade flows with different blockchain

fee levels as endogenous variables. Thus we can compute the cumulative impulse response of

return to a trade flow variable, i.e., its permanent price impact, which is regarded as a measure of

its private information content. Barclay, Hendershott, and McCormick (2003) and O’Hara, Yao,

and Ye (2014) apply the same approach to examine the informativeness of odd-lot trades versus

round-lot trades and ECN trades versus market-maker trades respectively.

4.1 Baseline structural VAR specification

A general structural VAR model can be specified as follows:

Ayt = α + Φ1yt−1 + · · · + Φpyt−p + εt (1)
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Table 2. Summary statistics of Uniswap trades. This table reports, for each token pair, summary statistics of
transaction price (TxPrice), transaction size (TxSize) and gas price (GasPrice). Gas price is denomnated in Gwei,
which equals to 10−9 ETH.

(a) Stable-Stable token pairs. Transaction size is denominated in thousand USDT.

N Mean SD 1% 10% Median 90% 99%
Pair Variable

USDC-USDT
TxPrice 123086 1.00 0.00 0.99 1.00 1.00 1.00 1.01
GasPrice 123086 105.20 93.92 16.00 33.00 86.00 192.00 420.00
TxSize 123086 4.36 11.57 0.01 0.12 1.30 10.00 50.00

DAI-USDT
TxPrice 68626 1.00 0.00 0.99 1.00 1.00 1.01 1.01
GasPrice 68626 97.13 116.51 16.94 33.10 79.00 171.00 400.00
TxSize 68626 2.54 5.50 0.00 0.07 0.85 6.01 27.65

(b) NonStable-Stable token pairs. Transaction size is denominated in ETH.

N Mean SD 1% 10% Median 90% 99%
Pair Variable

ETH-USDT
TxPrice 1242492 1102.82 534.86 384.03 468.39 1156.36 1808.08 1949.73
GasPrice 1242492 115.09 186.48 15.51 30.00 93.00 202.00 527.50
TxSize 1242492 8.42 106.26 0.01 0.15 1.45 13.70 122.23

ETH-USDC
TxPrice 1096573 1143.46 513.77 385.26 484.57 1228.99 1803.08 1949.10
GasPrice 1096573 121.27 215.92 16.00 34.21 99.00 210.00 551.00
TxSize 1096573 10.45 38.41 0.02 0.18 1.75 21.90 140.44

ETH-DAI
TxPrice 551912 1012.30 482.78 380.62 467.07 902.06 1760.85 1931.49
GasPrice 551912 111.90 308.95 15.70 31.00 82.50 195.80 554.00
TxSize 551912 12.91 109.34 0.01 0.10 1.43 33.53 159.55

(c) NonStable-NonStable token pairs. Transaction size is denominated in ETH.

N Mean SD 1% 10% Median 90% 99%
Pair Variable

WBTC-ETH
TxPrice 185927 30.85 4.70 22.67 24.33 31.61 36.96 41.89
GasPrice 185927 131.37 474.40 16.10 34.43 102.00 230.00 631.83
TxSize 185927 24.15 73.05 0.01 0.21 3.60 63.23 288.72

LINK-ETH
TxPrice 130257 0.02 0.00 0.01 0.01 0.02 0.03 0.03
GasPrice 130257 121.54 257.07 15.10 31.00 88.80 213.00 686.41
TxSize 130257 10.13 23.94 0.02 0.19 2.62 27.53 86.58

AAVE-ETH
TxPrice 74587 0.17 0.06 0.07 0.11 0.15 0.26 0.30
GasPrice 74587 115.72 180.75 15.10 29.00 88.80 205.81 600.00
TxSize 74587 11.98 19.83 0.03 0.20 4.86 29.50 86.60

where Φ1 . . .Φp are standard system matrices of the VAR model. εt is the vector of structural

innovations and satisfies the following conditions: E(εt) = 0; E(εtε
′
t) = Σε; E(εtε

′
s) = 0 for s , t.

What’s more important is yt, the vector endogenous variable vector, and A, the structural matrix
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capturing the contemporaneous correlations between the endogenous variables. Including which

endogenous variables in yt and assuming what kind of contemporaneous correlations between the

endogenous variables is up to the choice of the researchers, which normally is based on some

economic reasoning. We will detail our specifications below and provide our rationale for the

choice.

Our baseline specification for the structural VAR model is as follows:

yt =

(
rCEX

t xLowGas-DEX
t xMidGas-DEX

t xHighGas-DEX
t

)′
, A =



1 a12 a13 a14

0 1 0 0

0 a32 1 0

0 a42 a43 1


(2)

where t indexes block time. rCEX
t is Binance return from block time t − 1 to t. Note that we do

not have quote updates, but only trades, from Binance. So the return is calculated based on trade

prices, not midquotes. xLowGas-DEX
t , xMidGas-DEX

t and xHighGas-DEX
t are Uniswap trade flows in block t

with low, mid and high gas price levels respectively.

Timestamp convention As Binance runs a continuous central limit order book while Uniswap

executes trades in batches based on block time. It is important to specify the timestamp convention

we use for Binance return and Uniswap trade flows. In Figure 2, we provide a visual illustration.

Specifically, rCEX
t is the log difference between the price of the last Binance trade before block

time t − 1 and that of the last Binance trade before block time t. Then all Uniswap trade flows,

xLowGas-DEX
t , xMidGas-DEX

t and xHighGas-DEX
t , are computed based on trades executed in batch at block

time t. Next, we will detail our timestamp convention and our gas fee level classification scheme.

Gas fee level classification In the structural VAR specification above, we include DEX trade

flows with three different levels of gas price. Now, we introduce our classification scheme. For any
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Figure 2. Timestamp convention. This figure illustrates our time convention. t is block time. rCEX
t is the log return

from Binance defined over the time interval between t−1 and t. Note that we do not have quote updates from Binance.
The return is calculated based on trade prices, not midquotes. xCEX

t is the signed trade flow on Binance summed over
the time interval between block time t − 1 and t. xDEX

t is the signed trade flow on Uniswap at block time t.

• xDEX
t . Note that DEX trades

within the same block are
sequentially executed at the
same block time t.

t − 1 t

xCEX
t , rCEX

t

classification, finding the right benchmark gas fee is crucial. We adopt a rolling-window approach

to calculate the benchmark gas price. Specifically, to classify trades in the current block t, we first

sort them together with all trades within the last 20 non-empty blocks7, i.e., block t − 20 to block

t−1 based on their gas fee in descending order. Then trades in block t which fall in the top quartile

(i.e., above 75% quantile) is labeled as high-gas-price trades, xHighGas-DEX
t ; Trades which fall in

the bottom quartile (i.e., below 25% quantile) are labeled as low-gas-price trades, xLowGas-DEX
t ; All

other trades are labeled as mid-gas-price trades (i.e., between 25% and 75% quantile), xMidGas-DEX
t .

Thus for each block, we construct three DEX trade flows. For some blocks, we might only have

observations for only one or two types of trades, then trade flows for the remaining type(s) are

simply zero.

In Table 3 we report summary statistics of gas price and trade size of trades within each of the

three gas price category classified above. By construction, the average gas price of trades within

the high-gas group should be higher than that of trades within the mid- and low-gas groups. Take

ETH-USDT as an example. The average gas price of a trade classified as high-gas trade is 170.98

Gwei (1 Gwei = 10−9 ETH), which is almost double the size of that of a low-gas trade. One notable

point is that the average trade size of a trade in the high-gas category is much higher than that of

a trade in the mid- and low-gas categories. For example, the average trade size of a ETH-USDT

7As a robustness check, we redo the classification based on trades within the last five, ten blocks instead and all
results are qualitatively the same. In Appendix A.1, we report the structural VAR results based on alternative window
lengths.
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trade within the high-gas category is 17.72 ETH, which is more than five times that within the

low-gas category.

Table 3. Summary statistics of trade characteristics by gas fee level. This table reports, for each token pair,
summary statistics of the gas price (GasPrice) and transaction size (TxSize) by gas fee level. Gas price is denominated
in Gwei, which equals 10−9 ETH.

(a) Stable-Stable token pairs. Transaction size is in USDT.

N Mean SD Median
Pair Variable GasLevel

USDC-USDT

GasPrice
LowGas 29932 82.00 57.73 68.00
MidGas 60522 96.14 68.66 80.00
HighGas 32632 143.29 139.21 117.00

TxSize
LowGas 29932 3.00 8.12 0.98
MidGas 60522 3.95 11.05 1.14
HighGas 32632 6.37 14.57 2.20

DAI-USDT

GasPrice
LowGas 17056 73.57 50.70 61.00
MidGas 32797 90.15 63.40 76.00
HighGas 18773 130.72 196.34 104.00

TxSize
LowGas 17056 1.90 4.28 0.55
MidGas 32797 2.31 5.06 0.78
HighGas 18773 3.52 6.90 1.19

Resolution of the contemporaneous correlations Last, the structural matrix A is specified such

that we only allow the following contemporaneous relations: (1) all three DEX trade flow variables

cause CEX return but not vice versa, which is normally assumed in market microstructure; (2) low-

gas DEX trade flow causes mid-gas and high-gas DEX trade flows; (3) mid-gas DEX trade flow

causes high-gas DEX trade flow. We impose such a recursive structure so that we seek to obtain

a lower bound of the price impact of high-gas DEX trade flow. Similarly, O’Hara, Yao, and Ye

(2014) assume odd-lot trades cause round-lot and mixed-lot trades in one of their specification to

obtain a lower bound of the price impact of odd-lot trades.

Permanent price impact of trade flows After we have estimated the structural VAR model,

we can easily obtain the vector moving average (VMA) representation to compute the impulse

15



(b) NonStable-Stable token pairs. Transaction size is in ETH.

N Mean SD Median
Pair Variable GasLevel

ETH-USDT

GasPrice
LowGas 266642 88.21 67.25 74.00
MidGas 676442 100.95 76.10 85.00
HighGas 299408 170.99 350.67 128.00

TxSize
LowGas 266642 3.54 19.04 0.83
MidGas 676442 6.22 135.13 1.24
HighGas 299408 17.72 71.87 3.22

ETH-USDC

GasPrice
LowGas 235734 92.43 70.59 80.00
MidGas 594722 106.48 80.76 91.00
HighGas 266117 179.85 410.45 135.00

TxSize
LowGas 235734 4.30 18.83 0.94
MidGas 594722 7.89 32.35 1.54
HighGas 266117 21.59 57.04 4.19

ETH-DAI

GasPrice
LowGas 123305 82.09 68.38 65.00
MidGas 292993 96.50 83.46 76.00
HighGas 135614 172.27 603.48 115.23

TxSize
LowGas 123305 5.36 38.55 0.75
MidGas 292993 10.42 45.81 1.20
HighGas 135614 25.14 206.29 4.48

responses of return and trade variables to shocks in the structural innovations:

yt = Θ(L)εt = Θ0εt + Θ1εt−1 + Θ2εt−2 + · · · (3)

where Θ(L) is the polynomial of the lag operator Θ(L) = Θ0+Θ1L+Θ2L2+· · · . Then the permanent

price impact (PPI) of a trade/order variable k is defined as the cumulative impulse responses of the

midquote return to a unit shock in the trade flow, that is,

PPIk =

∑∞
j=0 ∂rt+ j

∂εk,t
= [Θ(1)]1,k (4)

where [Θ(1)]1,k denotes the (1, k)-th element of Θ(1), the impulse response of return to trade flow

variable k.
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(c) NonStable-NonStable token pairs. Transaction size is in ETH.

N Mean SD Median
Pair Variable GasLevel

WBTC-ETH

GasPrice
LowGas 43947 93.62 73.42 81.00
MidGas 94110 113.76 89.82 97.00
HighGas 47870 200.66 920.11 144.00

TxSize
LowGas 43947 10.86 42.08 1.58
MidGas 94110 21.21 71.58 3.15
HighGas 47870 42.14 92.33 14.72

LINK-ETH

GasPrice
LowGas 31427 81.82 68.14 64.64
MidGas 65276 100.83 86.63 80.00
HighGas 33554 199.03 478.83 130.00

TxSize
LowGas 31427 4.44 10.98 1.18
MidGas 65276 9.38 26.37 2.22
HighGas 33554 16.91 26.12 10.39

AAVE-ETH

GasPrice
LowGas 18186 75.26 59.33 59.00
MidGas 37196 97.12 78.39 78.00
HighGas 19205 190.04 322.35 127.86

TxSize
LowGas 18186 5.58 13.14 1.40
MidGas 37196 11.74 21.37 4.27
HighGas 19205 18.49 19.95 16.91

Information share of trade flows In addition to permanent price impact, we can compute the

so-called information shares of the trade flow variables via the approach of random walk decom-

position (See Hasbrouck, 1991b, for detailed proofs). In words, the information share measure

weighs the permanent price impact of a trade flow variable [Θ(1)]1,k by its own structural inno-

vation variance, σ2
εk

. So if two trade flow variables have the same permanent price impact, the

information share of the one which arrives at the market more frequently will have a larger infor-

mation share. Mathematically, the information share (IS) of trade flow variable k to price discovery

is computed as:

ISk =
[Θ(1)]2

1,kσ
2
εk∑

k[Θ(1)]2
1,kσ

2
εk

(5)

Implementation details We implement the structural VAR estimation in the following ways: (1)

the model is estimated at block-by-block frequency, although the gas price level classification is

based on a 20-block rolling window; (2) we set the number of lags in the structural VAR model to
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58; (3) As the base currency varies across token pairs, to ease comparison and aggregation across

token pairs, we standardize all trade flow variables such that they have zero mean and unit variance.

So the impulse responses reported below should be interpreted as permanent price impacts in basis

points per standard deviation increase in the trade flow.

4.2 An alternative structural VAR specification for robustness

In addition to Uniswap, traders can execute their trades on CEXs such as Binance as well. To

control for cross-venue arbitrage trades, we include Binance trade flow in the endogenous variable

vector and thus have the following alternative specification:

yt =

(
rCEX

t xCEX
t xLowGas-DEX

t xMidGas-DEX
t xHighGas-DEX

t

)′
, A =



1 a12 a13 a14 a15

0 1 0 0 0

0 a32 1 0 0

0 a42 a43 1 0

0 a52 a53 a54 1



(6)

xCEX
t is the signed trade flow on Binance aggregated between block time t − 1 and t. rCEX

t ,

xLowGas-DEX
t , xMidGas-DEX

t and xHighGas-DEX
t are all defined above and represent CEX return and Uniswap

trade flows with low, mid and high gas fee levels respectively.

Similarly, we specify the structural matrix A in such a way that we only allow CEX trade

flow to contemporaneously affect DEX trade flows, but not vice versa. In addition, as in the first

specification, we further assume the following contemporaneous relations: (1) low-gas DEX trade

flow causes mid-gas and high-gas DEX trade flows; (3) mid-gas DEX trade flow causes high-gas

DEX trade flow. Again, we impose such a recursive structure so that we seek to obtain a lower

bound of the price impact of high-gas DEX trade flow. In terms of economics, we impose such

8In Appendix A.2, we change the number of lags included in the structural VAR model to 10 and 20, and show
that estimation results are qualitatively the same.
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structural restrictions in order to control for informed traders splitting their trades on both CEXs

and DEXs. The idea is intuitive: assuming traders trade their private information on both CEXs

and DEXs, we should expect CEX and DEX trade flows to be highly correlated. So after the CEX

trade flow is controlled, if CEX prices still respond to DEX trade flows, it must be the case that the

DEX trade flows contain other private information.

5 Results

5.1 Summary statistics of return and trade flows

Table 4. Summary statistics of return and trade flow variables. This table reports, for each token pair, summary
statistics of the return and trade flow variables used in the structural VAR estimation of (See Equation 2 and Equa-
tion 6). rCEX

t is Binance return from block time t − 1 to t. xCEX
t is Binance trade flow. xDEX

t is Uniswap trade flows.
xLowGas-DEX

t , xMidGas-DEX
t and xHighGas-DEX

t are Uniswap trade flows consisting of trades from the low-, mid- and high-gas
category in block t. Both rCEX

t and rDEX
t are in basis point.

(a) Stable-Stable token pairs. All trade flow variables are denominated in thousand USD.

N Mean SD Min 50% Max

USDC-USDT

rCEX
t 109436 0.00 0.97 -93.50 0.00 78.48

xCEX
t 109436 -1.61 146.78 -4994.91 0.00 7305.06

xDEX
t 109436 0.01 10.93 -403.21 -0.01 500.00

xLowGas-DEX
t 109436 0.03 3.97 -145.13 0.00 430.50

xMidGas-DEX
t 109436 0.06 6.88 -206.70 0.00 500.00

xHighGas-DEX
t 109436 -0.08 7.51 -403.21 0.00 348.85

DAI-USDT

rCEX
t 63442 -0.00 2.53 -89.16 0.00 93.20

xCEX
t 63442 0.21 46.93 -1162.58 0.00 1009.53

xDEX
t 63442 0.01 5.78 -142.20 -0.00 141.16

xLowGas-DEX
t 63442 0.01 2.23 -61.21 0.00 58.82

xMidGas-DEX
t 63442 0.01 3.60 -81.14 0.00 68.87

xHighGas-DEX
t 63442 -0.02 3.87 -142.20 0.00 94.93

Before discussing the estimation results from the structural VAR model, we first report, for each

token pair, summary statistics of the return and trade flow variables in Table 4. There are several

notable observations. First, as expected, returns of NonStable-NonStable token pairs are most

19



(b) NonStable-Stable token pairs. All trade flow variables are denominated in ETH.

N Mean SD Min 50% Max

ETH-USDT

rCEX
t 636959 0.02 9.52 -551.79 0.00 362.82

xCEX
t 636959 -0.57 201.40 -7800.81 0.04 13897.08

xDEX
t 636959 0.17 45.18 -4304.51 0.02 5398.51

xLowGas-DEX
t 636959 -0.03 10.23 -2935.73 0.00 1241.70

xMidGas-DEX
t 636959 -0.08 23.93 -2579.05 0.00 2147.57

xHighGas-DEX
t 636959 0.28 36.87 -4304.51 0.00 5398.51

ETH-USDC

rCEX
t 593951 0.02 10.42 -456.54 0.00 353.11

xCEX
t 593951 -0.08 23.98 -3693.72 0.00 2345.59

xDEX
t 593951 0.20 49.79 -7426.57 -0.08 8305.92

xLowGas-DEX
t 593951 -0.12 10.45 -1558.00 0.00 1086.42

xMidGas-DEX
t 593951 -0.14 27.15 -2612.99 0.00 3005.27

xHighGas-DEX
t 593951 0.46 39.81 -7426.57 0.00 8305.92

ETH-DAI

rCEX
t 381166 0.04 11.98 -529.28 0.00 949.91

xCEX
t 381166 -0.03 7.10 -850.26 0.00 679.90

xDEX
t 381166 0.25 51.99 -9281.89 -0.00 3300.12

xLowGas-DEX
t 381166 -0.02 15.78 -6140.64 0.00 2165.82

xMidGas-DEX
t 381166 0.21 28.50 -1718.83 0.00 2841.28

xHighGas-DEX
t 381166 0.06 42.20 -11038.04 0.00 3196.28

(c) NonStable-NonStable token pairs. All trade flow variables are denominated in ETH.

N Mean SD Min 50% Max

WBTC-ETH

rCEX
t 156096 0.00 12.89 -360.42 0.00 300.74

xCEX
t 156096 0.07 8.90 -502.95 0.00 1991.97

xDEX
t 156096 0.02 77.20 -3465.19 0.18 4369.22

xLowGas-DEX
t 156096 0.05 18.64 -1690.72 0.00 1250.70

xMidGas-DEX
t 156096 0.23 48.26 -2954.34 0.00 4369.22

xHighGas-DEX
t 156096 -0.27 56.60 -3465.19 0.00 2344.65

LINK-ETH

rCEX
t 113044 -0.04 22.72 -639.83 0.00 828.08

xCEX
t 113044 -0.46 17.64 -2047.56 0.00 603.75

xDEX
t 113044 -0.04 22.19 -1187.08 -0.06 661.38

xLowGas-DEX
t 113044 -0.04 5.44 -202.07 0.00 255.32

xMidGas-DEX
t 113044 -0.10 14.54 -1187.08 0.00 652.36

xHighGas-DEX
t 113044 0.09 15.63 -432.35 0.00 661.38

AAVE-ETH

rCEX
t 66875 0.17 38.81 -429.98 0.00 420.53

xCEX
t 66875 -0.28 10.68 -676.27 0.00 493.72

xDEX
t 66875 0.12 18.88 -417.79 0.04 509.38

xLowGas-DEX
t 66875 0.05 5.43 -150.28 0.00 329.71

xMidGas-DEX
t 66875 0.03 12.84 -417.79 0.00 509.38

xHighGas-DEX
t 66875 0.05 12.84 -221.06 0.00 374.95
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volatile, followed by NonStable-Stable token pairs, and Stable-Stable token pairs. For instance,

per-block-time (≈15 seconds) standard deviation of Binance return, rCEX
t , is about 0.97, 9.49, and

12.88 basis points for USDC-USDT, ETH-USDT and WBTC-ETH respectively. The results are

not surprising as both NonStable-Stable and NonStable-NonStable pairs consist of risky tokens

such as Bitcoin and Ethereum and thus their prices respond to both short-term liquidity shocks and

long-term information shocks. In contrast, Stable-Stable token pairs are only affected by short-term

liquidity shocks as both of their tokens are pegged to the US Dollar.

Second, consistent with the liquidity summary statistics in Table 1, the magnitude of trade flows

on Uniswap versus Binance differs significantly across token pairs. For USDC-USDT, DAI-USDT

and ETH-USDT, the magnitude of trade flow is much more larger on Binance than Uniswap. For

example, standard deviation of per-block-time trade flow for USDC-USDT on Binance is about

150 thousand USD, more than 10 times larger than that of only about 10.93 thousand USD on

Uniswap. In contrast, for the rest of token pairs, ETH-USDC, ETH-DAI, WBTC-ETH, LINK-

ETH and AAVE-ETH, absolute trade flow is larger on Uniswap than Binance. Take WBTC-ETH

as an example. The standard deviation of per-block-time trade flow is about 77 Ethereum on

Uniswap compared with 8.9 Ethereum on Binance.

Third, across all token pairs, Uniswap trade flows with higher gas price are larger in magnitude.

For ETH-USDT, the standard deviation of Uniswap high-gas trade flow is 36.87 Ethereum, which

is more than three times larger than that of low-gas trade flow.

5.2 Blockchain fees and private information

Now, we investigate whether DEX trades with high blockchain fees contain more private informa-

tion. To do so, we estimate a structural VAR model (See Equation 2) where we include CEX return

and DEX trade flows with different levels of blockchain fees.
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5.2.1 Permanent price impacts of DEX trade flows

If DEX trade flow with high blockchain fees contains more private information than that with low

blockchain fees, we should see the former has a larger permanent price impact. In a structural VAR

framework, permanent price impact of a particular trade flow can be estimated by the cumulative

impulse responses of return to its unexpected component (See Equation 4). In Table 5, we report

the cumulative impulse responses of CEX return to DEX trade flows with different blockchain fee

levels. The results show that high-blockchain-fee DEX trade flow has a larger permanent price

impact and thus contains more private information. We discuss the detailed results below.

We first look at the estimation results for token pairs of the NonStable-Stable and NonStable-

NonStable types. Token pairs in both types have at least one non-stable coin and thus should

experience frequent private information shocks. The results show that the cumulative impulse re-

sponse of CEX return, rCEX
t , to high-blockchain-fee DEX trade flow, xHighGas-DEX

t , is statistically

significant. In addition, for both pair types, the cumulative impulse responses of CEX return to

high-blockchain-fee DEX trade flow are much larger in magnitude compared with mid- and low-

blockchain-fee DEX trade flows. For instance, for NonStable-Stable token pairs, one standard

deviation of positive shock to high-blockchain-fee DEX trade flow leads to a 3.41 basis points

increase in CEX return while that to low-blockchain-fee trade flow leads to no significant in-

crease. For NonStable-NonStable token pairs, although one standard deviation of positive shock

to low-blockchain-fee DEX trade flow leads to a statistically significant increase in CEX return, its

economic magnitude is much smaller than high-blockchain-fee DEX trade flow.

Then we turn to the estimation results for token pairs in the Stable-Stable type, which can serve

as a placebo test and show that our structural VAR model works. For Stable-Stable token pairs,

there is little private or public information as both tokens of the pairs are stable coins pegged to

the US Dollar. So without short-term liquidity shocks, token pairs should always be priced at one.

As a result, traders who trade Stable-Stable pairs are either liquidity traders who would like to

exchange one stablecoin for the other or arbitrageurs who respond to public information such as

transitory price discrepancy of the token pairs between CEXs and DEXs. For both types of trades,
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they can only result in a transitory impact on the prices, not permanent ones. The estimation results

are consistent with our expectations: the cumulative return impulse responses to DEX trade flows

are statistically insignificant, regardless of their blockchain fee levels.

Table 5. Cumulative impulse responses between CEX return and DEX trade flows with different gas price
levels. This table reports the impulse responses between the CEX return and DEX trade flows with different gas price
levels, cumulative over 20 blocks. Impulse responses are obtained by estimating the structural VAR model specified
in Equation 2. The estimation is done for each pair-day and statistical inference is based on pair-day estimates. Row
variables are response variables and column variables are shock variables. CEX return is in basis point. DEX trade
flows are standardized and thus in their standard deviations. *, ** and *** indicate significance levels at 1%, 5% and
10% respectively.

rCEX
t xLowGas-DEX

t xMidGas-DEX
t xHighGas-DEX

t

PairType Variable

Stable-Stable

rCEX
t 0.63*** 0.0 0.0 −0.01

(0.02) (0.01) (0.01) (0.01)
xLowGas-DEX

t 0.01 1.01*** −0.02* −0.02*
(0.01) (0.03) (0.01) (0.01)

xMidGas-DEX
t −0.01 −0.06*** 0.92*** −0.04***

(0.02) (0.01) (0.02) (0.02)
xHighGas-DEX

t 0.01 −0.13*** −0.28*** 0.85***
(0.01) (0.03) (0.03) (0.03)

NonStable-Stable

rCEX
t 0.97*** 0.0 0.47*** 3.41***

(0.01) (0.04) (0.08) (0.19)
xLowGas-DEX

t 0.0*** 1.0*** −0.02*** −0.02***
(0.0) (0.01) (0.01) (0.01)

xMidGas-DEX
t 0.01*** −0.08*** 0.97*** 0.03***

(0.0) (0.01) (0.01) (0.01)
xHighGas-DEX

t 0.04*** −0.13*** −0.22*** 1.06***
(0.0) (0.01) (0.01) (0.01)

NonStable-NonStable

rCEX
t 0.81*** 1.74*** 3.47*** 6.5***

(0.01) (0.31) (0.37) (0.54)
xLowGas-DEX

t 0.0*** 0.97*** −0.01 −0.04***
(0.0) (0.01) (0.01) (0.01)

xMidGas-DEX
t 0.01*** −0.06*** 0.99*** −0.01

(0.0) (0.01) (0.01) (0.01)
xHighGas-DEX

t 0.02*** −0.08*** −0.16*** 1.07***
(0.0) (0.01) (0.02) (0.02)
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Table 6. Information shares of DEX trade flows with different gas price levels. This table reports the information
shares of the CEX return and DEX trade flows with different gas price levels. Information shares are computed based
on Equation 5. The estimation is done for each pair-day and statistical inference is based on pair-day estimates.
Numbers in brackets are standard errors.

PairType Stable-Stable NonStable-Stable NonStable-NonStable
Variable

rCEX
t 97.98 89.07 84.17

(0.27) (0.48) (0.96)
xLowGas-DEX

t 0.6 0.21 1.84
(0.14) (0.03) (0.35)

xMidGas-DEX
t 0.76 0.49 3.66

(0.16) (0.07) (0.49)
xHighGas-DEX

t 0.66 10.23 10.32
(0.14) (0.46) (0.73)

5.2.2 Information shares of DEX trade flows

In Table 6 we further compute the information shares of DEX trade flows with different blockchain

fee levels. The information share approach not only considers the permanent price impact of a trade

flow variable, but also its own (unexpected) variances (See Equation 5). For example, if two trade

flow variables have the same permanent price impacts, the one with a larger (unexpected) variance

will have a larger information share.

The results show that, for NonStable-Stable and NonStable-NonStable token pairs, while CEX

return itself contributes the largest share to price discovery, which reflects public information, that

of the high-blockchain-fee DEX trade flow has a much larger information share than that of the

low-blockchain-fee DEX trade flow. For NonStable-Stable (NonStable-NonStable) pair type, the

high-blockchain-fee DEX trade flow contributes about 10.23% (10.32%) to price discovery, which

is much larger than 0.49% (3.66%) of the mid-blockchain-fee trade flow, and 0.21% (1.84%) of the

low-blockchain-fee DEX trade flow. In contrast, for Stable-Stable token pairs, CEX return itself

contributes virtually all (97.88%) price discovery. It shows that, for Stable-Stable token pairs, DEX

trade flows contain barely no private information. In addition, for Stable-Stable token pairs, DEX

trade flows of different blockchain fee levels contribute more or less the same.
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5.3 Blockchain fees and public information

Upon the release of new public information, the exchange price at CEX can be quickly adjusted to

the efficient price through quote revisions. In contrast, in most DEXs, prices are determined by a

pre-coded pricing function, so DEX prices are unable to be immediately adjusted and can only be

updated through the trades executed in the subsequent blocks. The response of DEX trade flows

to CEX price allows us to investigate whether DEX trades with higher blockchain fees are more

responsive to unexpected public information and help move DEX price towards the efficient price.

In Table 5, the first column reports the cumulative impulse responses of DEX trade flows with

different blockchain fee levels to one basis point of positive shock to CEX return. It shows that,

for Stable-Stable token pairs, the response of DEX trade flows to CEX return is not statistically

significant, for all three blockchain fee levels. As argued above, Stable-Stable pairs such as USDC-

USDT rarely have any public information, and the efficient exchange rate, 1, is common knowledge

for all traders. As a result, DEX trade flows for stablecoins are not responsive to CEX price changes

as they are transitory in nature.

In contrast, for NonStable-Stable and NonStable-NonStable token pairs, the cumulative im-

pulse responses of DEX trade flows to shocks to CEX return are statistically significant and their

magnitudes increase in blockchain fee levels. For instance, one basis point of positive shock to

CEX return of NonStable-Stable token pairs leads to an increase of high-blockchain-fee DEX trade

flow in the same direction for about 0.04 standard deviations, which is about four times larger than

the response of mid-blockchain DEX trade flow. As CEX return innovations represent the arrival

of public information shocks, the results show that it is mainly high-blockchain-fee DEX trades

that help update DEX prices to new equilibrium levels.

In summary, the above results suggest that DEX trade flow with high blockchain fees not only

contains more private information, but also responds more to public price innovations on CEXs.

Thus, high-blockchain-fee trade flow plays important roles in the price discovery process of crypto

trading. On the one hand, it reveals private information and incorporates it into the market prices.
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On the other hand, it helps update stale prices on DEXs so that prices across DEXs and CEXs are

more aligned.

5.4 Full dynamics of the impulse responses between CEX return and DEX

trade flows

In addition to analyzing the cumulative impulse responses between the CEX return and DEX trade

flows, it is useful to study full dynamics of the impulse responses so that we are able to see,

for example, the speed of market price adjustments to shocks in high-blockchain-fee versus low-

blockchain-fee DEX trade flow, and the persistency of DEX trade flows’ responses to shocks in

CEX return.

First, Panel (a) of Figure 3 plots the impulse response results between the return and trade flow

variables for Stable-Stable token pairs. Consistent with the cumulative return impulse response

results in Table 7, it shows that impulse responses of CEX return to DEX trades of all blockchain

fee levels are insignificant over all periods. In addition, the impulse responses of DEX trade flows

to CEX return, regardless of their blockchain fee levels, are statistically insignificant for all periods

as well.

Second, Panel (b) and (c) of Figure 3 plot the impulse responses for NonStable-Stable and

NonStable-NonStable token pairs respectively. It shows that while the return impulse response is

positive and significant in the contemporaneous (t = 0) and the next block (t = 1), it turns insignif-

icant from the second block (t = 2) onwards. It indicates that CEX return responds significantly

and quickly to high-blockchain-fee DEX trade flow. Or, in other words, traders are able to learn

the private information contained in the high-blockchain-fee DEX trade flow quickly and find a

new equilibrium market price. In contrast, the impulse responses of high-blockchain-fee and mid-

blockchain-fee trade flows to CEX return are statistically significant for around five blocks (t = 1

to t = 5). It shows that the response of DEX trade flows to public information is more sticky and

takes several blocks of time.
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Figure 3. Impulse response functions between CEX return and DEX trade flows with different gas price levels. This figure plots the impulse responses
between the CEX return and DEX trade flows with different gas price levels over the horizon of 20 blocks. Impulse responses are obtained by estimating the
structural VAR model specified in Equation 2. CEX return is in basis point and DEX trade flows are standardized and thus in standard deviations. The estimation
is done for each pair-day and statistical inference is based on pair-day estimates. Dashed black lines represent 95% confidence bands.
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(b) NonStable-Stable token pairs.
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(c) NonStable-NonStable token pairs.
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5.5 Robustness: Structural VAR results with CEX trade flow included

For both informed traders trading on their private signals or arbitrageurs racing on public news, it

is likely that they split their trades between CEXs and DEXs in order to reduce their price impacts.

As a result, CEX trade flow and DEX trade flow can be positively correlated. As a robustness

check, we include CEX trade flow in the structural VAR specification as in Equation 6. If, after

controlling for CEX trade flow, DEX trade flow, especially the high-gas DEX trade flow, still has a

large permanent impact on CEX price, we are more confident that DEX trade flow captures private

information not contained in CEX trade flow.

In Table 7 and 8, we report permanent price impacts and information shares of DEX trade

flows with different blockchain fee levels respectively, with CEX trade flow controlled. The results

are qualitatively the same as the baseline: high-blockchain-fee DEX trade flow has a much larger

permanent price impact and information share than mid- and low-blockchain-fee DEX trade flows.

Actually, adding CEX trade flow only slightly reduces the economic magnitude of the permanent

price impacts of high-blockchain-fee DEX trade flow. For example, for NonStable-Stable token

pairs, the cumulative CEX return impulse response to one positive standard deviation shock in

high-blockchain-fee DEX trade flow is 3.06 basis points when CEX trade flow is controlled, which

is marginally smaller than 3.47 basis points when CEX trade flow is not controlled. In addition, the

permanent price impact of high-blockchain-fee DEX trade flow is comparable to that of CEX trade

flow: for NonStable-Stable (NonStable-NonStable) token pairs, one standard deviation of positive

shock to the high-blockchain-fee DEX trade flow leads to an increase of about 3.06 (3.73) basis

point in the CEX price, compared with 6.09 (5.07) basis points to the CEX trade flow.

5.6 Blockchain fees and information: Economic mechanisms

In the above sections, we have shown that high-blockchain-fee DEX trade flow not only contains

more private information, but also responds more to public price innovations on CEXs compared
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Table 7. Cumulative impulse responses between CEX return, CEX trade flow, and DEX trade flows with dif-
ferent gas price levels. This table reports the impulse responses between the CEX return, CEX trade flow, and DEX
trade flows with different gas price levels, cumulative over 20 blocks. Impulse responses are obtained by estimating
the structural VAR model specified in Equation 6. The estimation is done for each pair-day and statistical inference
is based on pair-day estimates. Row variables are response variables and column variables are shock variables. CEX
return is in basis point. CEX trade flow and DEX trade flows are standardized and thus in their standard deviations. *,
** and *** indicate significance levels at 1%, 5% and 10% respectively.

rCEX
t xCEX

t xLowGas-DEX
t xMidGas-DEX

t xHighGas-DEX
t

PairType Variable

Stable
-
Stable

rCEX
t 0.55*** 0.32*** 0.01 0.0 −0.01

(0.01) (0.03) (0.01) (0.01) (0.01)
xCEX

t −0.2*** 1.19*** 0.01 0.0 0.0
(0.03) (0.07) (0.02) (0.02) (0.02)

xLowGas-DEX
t 0.01 0.01 1.01*** −0.02* −0.02*

(0.02) (0.02) (0.03) (0.01) (0.01)
xMidGas-DEX

t 0.0 0.01 −0.06*** 0.92*** −0.04***
(0.02) (0.02) (0.02) (0.02) (0.02)

xHighGas-DEX
t 0.0 0.01 −0.13*** −0.28*** 0.85***

(0.01) (0.02) (0.03) (0.03) (0.03)

NonStable
-
Stable

rCEX
t 0.97*** 3.73*** −0.01 0.4*** 3.06***

(0.01) (0.28) (0.04) (0.08) (0.17)
xCEX

t 0.0*** 1.27*** 0.0 0.0 0.09***
(0.0) (0.02) (0.0) (0.01) (0.01)

xLowGas-DEX
t 0.0*** 0.02*** 1.0*** −0.02*** −0.02***

(0.0) (0.0) (0.01) (0.01) (0.01)
xMidGas-DEX

t 0.01*** 0.06*** −0.08*** 0.97*** 0.02***
(0.0) (0.01) (0.01) (0.01) (0.01)

xHighGas-DEX
t 0.03*** 0.22*** −0.13*** −0.22*** 1.05***

(0.0) (0.01) (0.01) (0.01) (0.01)

NonStable
-
NonStable

rCEX
t 0.8*** 5.07*** 1.76*** 3.18*** 6.09***

(0.01) (0.44) (0.32) (0.37) (0.55)
xCEX

t 0.0*** 1.25*** 0.02* 0.03*** 0.1***
(0.0) (0.03) (0.01) (0.01) (0.02)

xLowGas-DEX
t 0.0*** 0.01 0.97*** −0.01 −0.04***

(0.0) (0.01) (0.01) (0.01) (0.01)
xMidGas-DEX

t 0.01*** 0.09*** −0.06*** 0.98*** −0.01
(0.0) (0.01) (0.01) (0.01) (0.01)

xHighGas-DEX
t 0.02*** 0.19*** −0.09*** −0.17*** 1.06***

(0.0) (0.02) (0.01) (0.02) (0.02)

with low-blockchain-fee trade flow. In other words, both privately informed traders and public

information arbitrageurs bid a high blockchain fee for their orders. Next, we provide possible

economic channels and then use mempool data to test them.
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Table 8. Robustness: Information shares of CEX trade flow and DEX trade flows with different gas price levels.
This table reports the information shares of the CEX return, CEX trade flow and DEX trade flows with different gas
price levels. Information shares are computed based on Equation 5. The estimation is done for each pair-day and
statistical inference is based on pair-day estimates. Numbers in brackets are standard errors.

PairType Stable-Stable NonStable-Stable NonStable-NonStable
Variable

rCEX
t 71.19 75.49 73.71

(1.99) (1.5) (1.32)
xCEX

t 26.91 15.51 12.48
(1.93) (1.5) (1.28)

xLowGas-DEX
t 0.62 0.21 1.74

(0.13) (0.03) (0.33)
xMidGas-DEX

t 0.74 0.45 3.27
(0.16) (0.07) (0.48)

xHighGas-DEX
t 0.54 8.35 8.8

(0.13) (0.4) (0.68)

5.6.1 Channel #1: Competition among traders on the same or similar information

The first channel states that both privately informed traders and public information arbitrageurs

bid high blockchain fees because they compete with each other on the same or similar information.

Competition naturally arises among public information arbitrageurs as by nature they receive the

same trading signal. For example, when there is a fundamental value shock to a token pair, prices

on CEXs and DEXs might adjust asynchronously, creating cross-venue arbitrage opportunities.

Another example of public information arbitrage is triangular arbitrage. If market is frictionless,

prices of a group of linked token pairs such as ETH-USDT, ETH-USDC and USDC-USDT should

be aligned. However, when there is a fundamental value shock to one token pair and prices of other

token pairs adjust with a lag, cross-token-pair arbitrage opportunities might arise. The key point

is that public information such as price differences across venues or linked token pairs is visible to

all who exert monitoring effort, giving rise to competition.

As for competition on private information, it is more subtle. One might wonder why there is

competition among privately informed traders in the first place due to its private nature. There

are two possible causes: first, private information is not only possessed by one informed trader;

instead, there are multiple traders who receive either the same or highly correlated private signals
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(See, e.g., Holden and Subrahmanyam, 1992; Foster and Viswanathan, 1996; Back, Cao, and

Willard, 2000); second, there are “back-runners” (Yang and Zhu, 2020) or “predators” (Brunner-

meier and Pedersen, 2005) who are not endowed with private signals but infer them from public

signals such as order imbalance or blockchain fees attached to the trades in the context of DEXs.

There are two important implications from the first “trader competition” channel. The first

implication is that we should observe competing traders, either for public information or private

information, engage in a blockchain fee bidding game: they will keep increasing blockchain fees

attached to their trades to outbid other traders and get their trades executed first in the next block.

The second implication is that we should see the revenue of the competing traders be competed

away.

5.6.2 Channel #2: Execution risk due to blockchain crowding

The second channel states that the reason why traders bid high blockchain fees is not due to com-

petition with other traders. Rather, as the block space is limited, they do so to lower the execution

risk and thus increase the expected profit on their private information. It is in particular true for

informed traders who possess short-lived private information over, e.g, the next block, and public

information arbitrageurs who can be viewed as a limit case of traders with extremely short-lived

private information. In contrast, informed traders with long-lived private information or patient

liquidity traders are willing to wait and thus to pay a low blockchain fee. We would like to note

that in such a case, they are to some extent engaged with competition as well. The key difference

is that now the competition is not with other traders, but with other users of the blockchain. For

example, users who pay blockchain fees to transfer funds or bid high blockchain fees during events

like initial coin offerings (ICOs).

The second “blockchain crowding” channel yields the opposite implications compared with the

first “trader competition” channel. First, as there is no competition among the traders, we should

not observe they engage in blockchain fee bidding competition, that is, consecutively increasing

the blockchain fees attached to their orders. Instead, they will choose relatively high blockchain
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fees at the first place to increase the likelihood that their trades will be included by the validators in

the next block. Second, given that there is no competition with other traders on the same or similar

information, traders can potentially earn a positive profit on their information.

5.6.3 Identify “competition trades”

To test the two channels above, we first identify trades which are likely to be involved in competi-

tion among multiple traders (“competition trades”). The intuition is simple. When multiple traders

compete either on public or private information, they are expected to increase the blockchain fees

attached to their orders to outbid others and get their own orders executed first. Thus, we should

see the final winning order, i.e., the executed trade, has multiple rounds of blockchain fee increase

before it gets executed on chain. Specifically, we match executed trades with mempool orders

based on the following three criteria:

1. Matched orders must have the same submission address and nonce as the executed trade.

Recall that a trader on DEX has to attach a number called “nonce” to each of her orders.

The most important property of nonce is that each number can only be used once and it

must be used in a consecutively increasing order. For example, a new order broadcasted by

a trader needs to have a new nonce increased by 1 compared with the previous order. More

importantly, a trader’s order with a larger nonce can not be executed before one with smaller

nonce, which implies that, when a trader wants to modify her pending order, e.g., increase

the blockchain fee, she needs to broadcast a new order with the same nonce as the pending

one. So, the first criterion on submission address and nonce guarantees that the matched

mempool orders are indeed the previous revisions of the final executed one.

2. Gas price must increase from matched orders to the executed trade. For both mempool

orders and the executed trade, we observe the gas price attached to each of them. The second

criterion requires that the gas price must increase from matched mempool orders to the final

executed trade so that we capture the trades involved in gas fee bidding among traders.
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3. Matched orders and the executed trade must be in the same block. We impose the last

criterion on the time horizon because we believe gas bidding due to competition should

happen within a fairly short time window. If the window is too long, it is more likely to

result from patient liquidity traders who revise their blockchain fees after a long waiting

time.

Table 9 reports the matching results. It shows that, surprisingly, across all eight token pairs in

our sample, only a very small fraction of executed trades can be labeled as “competition trades”.

For example, only 0.64%, 0.78%, and 0.99% of executed trades for USDC-USDT, ETH-USDT

and WBTC-ETH satisfy all three criteria and thus are “competition trades”. Even if we drop the

last criterion on the maximum time duration between the first matched mempool order and the

final executed trade, which is subject to the researcher’s choice, only 2.86%, 3.13%, and 3.20%

of executed trades have a match for USDC-USDT, ETH-USDT and WBTC-ETH respectively. In

other words, not only do most traders not engage in gas price bidding game, but also they rarely

increase their gas price at all. It seems to be the case that they choose a gas price ex ante that they

deem will be sufficient for getting their orders executed in a reasonable time window.

Table 9. Matching results between executed trades and mempool orders. This table shows the results of matching
between executed trades and mempool orders. “All-Matched” shows the percentage of executed trades with at least
one matched order, regardless of the last criteria on the time horizon. “Unmatched” shows the percentage of executed
trades without any matched order, regardless of the last criteria on the time horizon. The “All-Matched” rate is further
broken down based on the block distance between the first matched order and the executed trade.

Blocks 0 1 2 3-5 6-10 10+ All-Matched Unmatched
PairType Pair

Stable-Stable
USDC-USDT 0.64 0.26 0.15 0.34 0.34 1.13 2.86 97.14
DAI-USDT 0.63 0.35 0.19 0.33 0.42 1.46 3.39 96.61

NonStable-Stable
ETH-USDT 0.78 0.34 0.19 0.33 0.30 1.19 3.13 96.87
ETH-USDC 0.92 0.35 0.19 0.33 0.29 1.19 3.27 96.73
ETH-DAI 1.08 0.39 0.22 0.38 0.35 1.51 3.94 96.06

NonStable-NonStable
WBTC-ETH 0.99 0.31 0.15 0.33 0.28 1.15 3.20 96.80
LINK-ETH 1.32 0.51 0.27 0.37 0.35 1.56 4.37 95.63
AAVE-ETH 1.59 0.50 0.27 0.24 0.34 1.69 4.64 95.36
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5.6.4 Information content of “competition trades” versus “non-competition trades”

Although the above matching results show that only a very small fraction of executed trades is

likely to be involved in trader competition, they might play a disproportionately large role in price

discovery and drive the structural VAR results we observe in the previous section. To formally test

whether it is the case, we adopt the following two empirical strategies.

Excluding “competition trades” In the first approach, we construct DEX trade flows with dif-

ferent gas price levels excluding “competition trades” and then re-implement the structural VAR

analysis. If high gas prices are the result of competition among privately informed traders and

public information arbitrageurs, we should see both the impulse response of CEX return to the

high-gas DEX trade flow shock and that of high-gas DEX trade flow to CEX return shock become

either statistically insignificant or smaller in magnitude, after we exclude the “competition trades”.

Table 10 reports the estimation results. Compared with the baseline results when “competition

trades” are included (See Table 5), the results with “competition trades” excluded barely change.

Again, we see that, for both NonStable-Stable and NonStable-NonStable token pairs, (1) the cumu-

lative impulse response of CEX return to high-gas DEX trade flow shock is larger than that to mid-

and low-gas DEX trade flows, and (2) the cumulative impulse response of high-gas DEX trade

flow to CEX return shock is larger than that of mid- and low-gas DEX trade flows. In addition,

the magnitudes of both impulse responses do not change much compared with the baseline. The

results illustrate that our key results—high-gas-price DEX trade flow is more privately informed

and more responsive to public information—are not driven by competition among traders.

Separating “competition trades” from “non-competition trades” In the second approach, we

further separate “competition trades” from “non-competition trades” for DEX trades in each gas

level and thus construct the following four different DEX trade flows: low-gas, competition trade

flow (xLG-C-DEX
t ), low-gas, non-competition trade flow (xLG-NC-DEX

t ), high-gas, competition trade

flow (xHG-C-DEX
t ), and high-gas, non-competition trade flow (xLG-NC-DEX

t ). Specifically, low-gas,
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Table 10. Cumulative impulse responses between CEX return and DEX trade flows: Excluding “competition
trades”. This table reports the impulse responses between the return and trade flow variables, cumulative over 20
blocks. Impulse responses are obtained by estimating the structural VAR model specified in Equation 2. The estimation
is done for each pair-day and statistical inference is based on pair-day estimates. Row variables are response variables
and column variables are shock variables. CEX return is in basis point. DEX trade flows are standardized and thus in
their standard deviations. *, ** and *** indicate significance levels at 1%, 5% and 10% respectively.

rCEX
t xLowGas-DEX

t xMidGas-DEX
t xHighGas-DEX

t

PairType Variable

Stable-Stable

rCEX
t 0.59*** 0.46 0.05 0.01

(0.01) (0.42) (0.16) (0.05)
xLowGas-DEX

t 0.01 1.0*** −0.02 −0.03***
(0.01) (0.04) (0.02) (0.01)

xMidGas-DEX
t −0.01 −0.17** 0.89*** −0.07***

(0.01) (0.08) (0.04) (0.02)
xHighGas-DEX

t 0.01 −0.07 −0.25*** 0.81***
(0.01) (0.06) (0.03) (0.02)

NonStable-Stable

rCEX
t 0.96*** 0.0 0.41*** 3.25***

(0.01) (0.04) (0.08) (0.18)
xLowGas-DEX

t 0.0*** 1.0*** −0.02** −0.01***
(0.0) (0.01) (0.01) (0.01)

xMidGas-DEX
t 0.01*** −0.08*** 0.97*** 0.02***

(0.0) (0.01) (0.01) (0.01)
xHighGas-DEX

t 0.03*** −0.13*** −0.21*** 1.06***
(0.0) (0.01) (0.01) (0.01)

NonStable-NonStable

rCEX
t 0.81*** 1.84*** 3.16*** 6.47***

(0.01) (0.34) (0.35) (0.53)
xLowGas-DEX

t 0.0*** 0.97*** −0.01 −0.03***
(0.0) (0.01) (0.01) (0.01)

xMidGas-DEX
t 0.01*** −0.06*** 0.99*** 0.0

(0.0) (0.01) (0.01) (0.01)
xHighGas-DEX

t 0.02*** −0.08*** −0.15*** 1.07***
(0.0) (0.01) (0.02) (0.02)

competition trade flow, xLG-C-DEX
t , is constructed based on trades that satisfy both conditions below:

(1) they have a gas price below the 50% quantile of all trades in the last 20 non-empty blocks; (2)

they are identified as “competition trades”.9 Other three DEX trade flows are defined likewise.

Then we re-implement the structural VAR estimation with the four DEX trade flows. If high gas

9Note that we only classify trades into two categories (xLowGas-DEX
t , and xHighGas-DEX

t ) based on their gas price levels
instead of three categories (xLowGas-DEX

t , xMidGas-DEX
t and xHighGas-DEX

t ) as in our baseline specification above. We do
so because of the small number of “competition trades” in our data. For the finer gas level classification, we end up
with zero observation for certain trade flow, e.g., low-gas, competition trade flow, and thus makes the structural VAR
estimation unfeasible.
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prices are driven by competition, we should see (1) the impulse response of CEX return to high-

gas, competition DEX trade flow shock larger than that to high-gas, non-competition trade flow

shock, and (2) the impulse response of high-gas, competition DEX trade flow to CEX return shock

larger than that of high-gas, non-competition trade flow.

In Table 11, we report the estimation results from our new structural VAR specification. It

shows that the permanent price impact of non-competition DEX trade flow is much larger than that

of competition DEX trade flow, especially for the high-gas category. For example, for NonStable-

Stable token pairs, one standard deviation of a positive shock to the high-gas, non-competition

DEX trade flow, xHG-NC-DEX
t , leads to an increase of about 3.06 basis points in the CEX return

while the same amount of positive shock to the high-gas, competition DEX trade flows, xHG-C-DEX
t ,

increases CEX return by only 1.16 basis points. In addition, impulse response of high-gas, non-

competition trade flow to CEX return shock is larger than that of high-gas, competition trade flow.

Specifically, for NonStable-Stable token pairs, a positive shock of one basis point to CEX return

leads to an increase of about 0.04 standard deviation in the high-gas, non-competition trade flow,

compared with about 0.01 standard deviation in the high-gas, competition trade flow. The above

results demonstrate that high-gas, non-competition trades are more privately informed and respon-

sive to public information than high-gas competition trades. In other words, “trader compeittion”

channel is not likely to drive our structural VAR results.

5.7 Trading revenue and blockchain fees

For both privately informed traders and public information arbitrageurs, blockchain fee is an extra

source of transaction cost in addition to the immediate price impact. So, if they are willing to pay

a higher blockchain fee, it must be the case that doing so leads to higher profits for them, given the

fact that there is barely any competition as we have established above. To confirm our conjecture,

we study the profitability of DEX trades with different blockchain fee levels.
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Table 11. Cumulative impulse responses between CEX return and DEX trade flows: Separating “competition
trades” from “non-competition trades”. This table reports the impulse responses between the return and trade flow
variables, cumulative over 20 blocks. xLG-C-DEX

t represents low-gas, competition trade flow. xLG-NC-DEX
t indicates low-

gas, non-competition trade flow. xHG-C-DEX
t indicates high-gas, competition trade flow. xHG-NC-DEX

t means high-gas,
non-competition trade flow. Impulse responses are obtained by estimating the structural VAR model. The estimation
is done for each pair-day and statistical inference is based on pair-day estimates. Row variables are response variables
and column variables are shock variables. The return variable is in basis point. Trade flow variables are standardized
and thus in their standard deviations. *, ** and *** indicate significance levels at 1%, 5% and 10% respectively.

rCEX
t xLG-NC-DEX

t xLG-C-DEX
t xHG-NC-DEX

t xHG-C-DEX
t

PairType Variable

Stable
-

Stable

rCEX
t 0.61*** 0.02 0.01 0.0 0.0

(0.03) (0.02) (0.02) (0.02) (0.01)
xLG-NC-DEX

t 0.0 0.91*** 0.01 −0.03 0.04
(0.02) (0.03) (0.03) (0.02) (0.03)

xLG-C-DEX
t 0.04 −0.04 0.98*** 0.0 0.03

(0.03) (0.04) (0.01) (0.02) (0.02)
xHG-NC-DEX

t −0.01 −0.25*** 0.02* 0.76*** −0.01
(0.02) (0.04) (0.01) (0.05) (0.02)

xHG-C-DEX
t 0.02 −0.04 0.02 −0.08 0.99***

(0.02) (0.04) (0.02) (0.1) (0.01)

NonStable
-

Stable

rCEX
t 0.97*** 0.11 0.09 3.06*** 1.16***

(0.01) (0.07) (0.07) (0.2) (0.16)
xLG-NC-DEX

t 0.0*** 0.98*** 0.0 0.0 0.01
(0.0) (0.01) (0.01) (0.01) (0.0)

xLG-C-DEX
t 0.0 −0.01 1.0*** −0.02*** 0.0

(0.0) (0.01) (0.01) (0.0) (0.0)
xHG-NC-DEX

t 0.04*** −0.22*** 0.01 1.0*** 0.05***
(0.0) (0.02) (0.01) (0.01) (0.01)

xHG-C-DEX
t 0.01*** −0.06*** 0.0 −0.04*** 1.04***

(0.0) (0.01) (0.0) (0.01) (0.01)

NonStable
-

NonStable

rCEX
t 0.83*** 2.45*** 1.37*** 7.03*** 1.34***

(0.02) (0.5) (0.46) (0.78) (0.47)
xLG-NC-DEX

t 0.0*** 1.01*** 0.03 −0.05*** 0.0
(0.0) (0.02) (0.02) (0.02) (0.01)

xLG-C-DEX
t 0.0*** −0.06** 1.03*** −0.05*** 0.01

(0.0) (0.03) (0.02) (0.01) (0.01)
xHG-NC-DEX

t 0.02*** −0.13*** 0.0 1.05*** 0.03
(0.0) (0.02) (0.02) (0.03) (0.02)

xHG-C-DEX
t 0.0*** −0.06*** −0.01 −0.03 1.03***

(0.0) (0.01) (0.02) (0.02) (0.01)
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5.7.1 A simple revenue metric

We use a simple metric to compute the revenue of a DEX trade:

Revenuet = RPIt − RESt − BlockchainFeet, (7)

where t indexes Uniswap trades. RPIt is the relative price impact, which serves as a proxy for the

gross trading revenue. RESt is the relative effective spread and measures the transaction cost of

the trade resulting from both its (immediate) price impact along the Uniswap pricing curve and the

Uniswap transaction fee of 30 basis points. BlockchainFeet is the relative blockchain fee defined

as the dollar blockchain fee divided by the dollar size of the trade.

In addition, we define the first two components of our revenue metric, RPIt and RESt, below:

RPIt =
di

(
Midt+∆t −Midt

)
Midt

, (8)

RESt =
di (pt −Midt)

Midt
. (9)

where Midt represents the prevailing “midquote” just before trade t. Midt+∆t represents the

prevailing “midquote” ∆t after the trade. di is the trade direction indicator. Note that in CEXs

with a limit order book, midquote is simply the average of the best bid and ask. As we do not

have quotes in the Uniswap, midquote is computed as the ratio of the amount of two tokens in the

pool, y/x, i.e., the hypothetical price for an infinitesimal trade. pt is the transaction price. In LOB

market, pt is computed as the volume-weighted average price (VWAP) of the trade as one incoming

market order can hit multiple limit orders with different prices, i.e., “walk the book”. In contrast,

we don’t have the same issue in the AMM, so pt is simply computed as the ratio of the amount of

two tokens swapped, i.e., ∆y/∆x, which, without transaction fees, should be approximately equal

to y/(x − ∆x).
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5.7.2 Revenue of DEX trades with different blockchain fee levels

After defining our revenue metric, we are ready now to compute it and its three components for

all trades in our sample. Table 12 reports their summary statistics by token pair and gas fee level.

There are three main takeaways. First, across all eight token pairs and gas fee levels, revenue of the

majority of DEX trades is negative. The result is perhaps not surprising. For uninformed traders

which make up a large share of all traders, they trade the token pairs to meet their liquidity needs

or to realize their private values. So, they are wiling to incur a loss in their trades to get them

executed. Essentially, they pay a service fee to the liquidity providers in the pool.

Second, for NonStable-Stable and NonStable-NonStable token pairs, there is a much higher

fraction of positive-revenue DEX trades in the high-blockchain-fee category than in the low- and

mid-blockchain-fee categories. For example, for both token pairs of ETH-USDT and WBTC-ETH,

when sorted by revenue in an ascending order, a low- or mid-blockchain-fee DEX trade at the 90%

quantile has a negative revenue while a high-blockchain-fee DEX trade at 90% quantile has a

positive revenue. In other words, high-blockchain-fee DEX trades are more likely to be profitable

compared with low- and mid-blockchain-fee DEX trades.

Third, virtually all DEX trades in the Stable-Stable token pairs have a negative revenue. For

example, for both USDC-USDT and DAI-USDT, even trades at the extreme tail such as 95%

quantile have a negative revenue. As argued above, there is hardly any private or public information

contained in the Stable-Stable token pairs, thus it is expected that most trades in the token pair are

for liquidity reasons and thus unlikely to become profitable. To present visual evidence on the

revenue analysis, Figure 4 plots the revenue distribution by gas fee level. It can be clearly seen that

as we move from trades in the low- and mid- to the high-blockchain-fee category, a larger fraction

of DEX trades have a positive revenue.
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Table 12. Summary statistics of the revenue metric. This table reports the summary statistics of our trading revenue
metric and its three components respectively. Specifically, the trading revenue metric is defined as:

Revenuet = RPIt − RESt − BlockchainFeet

, where RPIt is relative price impact. RESt is relative effective spread. BlockchainFeet is relative blockchain fee
computed as the dollar blockchain fee divided by the dollar size of the trade. All variables are in basis points.

(a) Stable-Stable token pairs. All trade flow variables are denominated in thousand USD.

N 5% 10% 25% 50% 75% 90% 95%
Pair GasLevel Component

USDC-USDT

LowGas

RPI 15512 -37.79 -26.37 -10.24 4.94 21.24 39.16 50.43
RES 15512 30.08 30.13 30.26 30.68 31.82 34.17 37.10
GasFee 15512 9.93 18.76 49.29 140.08 404.02 1061.10 1953.37
Rev 15512 -1983.20 -1087.62 -430.79 -168.07 -79.29 -44.43 -28.65

MidGas

RPI 33266 -37.83 -26.88 -9.91 6.19 22.99 40.65 52.98
RES 33266 30.10 30.16 30.36 30.98 32.47 35.63 39.75
GasFee 33266 9.08 16.78 42.75 117.55 340.66 887.93 1705.57
Rev 33266 -1729.56 -916.30 -367.64 -145.98 -72.50 -40.91 -25.52

HighGas

RPI 17261 -38.09 -26.25 -8.75 7.82 25.78 44.89 58.20
RES 17261 30.15 30.27 30.66 31.71 33.91 39.59 45.89
GasFee 17261 9.22 15.44 39.36 96.48 250.32 684.78 1352.19
Rev 17261 -1377.11 -711.73 -276.81 -126.63 -67.97 -37.17 -20.24

DAI-USDT

LowGas

RPI 7105 -49.76 -35.59 -12.91 7.90 29.42 50.16 63.54
RES 7105 30.11 30.19 30.50 31.44 34.01 39.29 44.43
GasFee 7105 14.04 25.10 63.39 183.53 546.44 1481.97 3025.50
Rev 7105 -3077.90 -1496.92 -572.21 -208.94 -95.21 -52.14 -32.52

MidGas

RPI 14973 -46.96 -33.20 -11.59 9.88 31.85 53.45 67.75
RES 14973 30.16 30.28 30.76 32.10 35.40 42.59 49.10
GasFee 14973 13.33 23.12 59.04 154.30 448.97 1244.70 2415.85
Rev 14973 -2435.78 -1259.46 -473.06 -180.74 -90.28 -49.24 -28.84

HighGas

RPI 7985 -45.04 -31.26 -9.37 12.96 35.90 59.92 78.40
RES 7985 30.25 30.48 31.25 33.27 38.01 47.69 56.93
GasFee 7985 14.32 22.49 52.54 137.36 364.50 1027.85 2048.14
Rev 7985 -2061.96 -1055.96 -388.69 -162.70 -83.08 -43.35 -20.89

5.7.3 Do “competition trades” constitute the majority positive-revenue DEX trades?

Although “competition trades” constitute a rather small fraction of all trades (See Table 9), they

might constitute a large fraction of positive-revenue DEX trades. To see whether it is true, we

compute the percentage of “competition trades” versus “non-competition trades” for both positive-

revenue and negative-revenue DEX trades. Table 13 reports the results. It shows that although for

positive-revenue DEX trades, a larger fraction of them comes from “competition trades” compared

with negative-revenue DEX trades, the percentage remains rather low. Take DEX trades in the

token pair of ETH-USDT as an example. Out of all positive-revenue trades, only 1.60% of trades

are competition trades. In other words, the vast majority of positive-revenue trades remain to be
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(b) NonStable-Stable token pairs. All trade flow variables are denominated in ETH.

N 5% 10% 25% 50% 75% 90% 95%
Pair GasLevel Component

ETH-USDT

LowGas

RPI 261367 -116.30 -77.24 -31.84 1.10 34.37 79.86 118.81
RES 261367 30.01 30.02 30.09 30.14 30.32 30.79 31.38
GasFee 261367 8.32 16.75 49.43 154.05 468.55 1242.21 2329.24
Rev 261367 -2363.69 -1276.65 -508.94 -197.80 -80.91 -27.41 6.64

MidGas

RPI 667625 -115.60 -75.95 -31.02 1.41 34.74 80.66 121.14
RES 667625 30.01 30.03 30.10 30.18 30.45 31.13 32.23
GasFee 667625 6.11 12.91 37.97 112.35 348.84 968.76 1857.24
Rev 667625 -1890.12 -1004.70 -394.57 -158.34 -66.83 -17.17 18.99

HighGas

RPI 293587 -109.91 -71.70 -27.60 5.22 41.68 91.92 136.61
RES 293587 30.03 30.08 30.15 30.40 31.24 35.50 39.88
GasFee 293587 2.46 4.60 19.86 65.89 191.18 559.09 1079.14
Rev 293587 -1114.72 -598.77 -244.19 -109.08 -40.76 15.05 59.88

ETH-USDC

LowGas

RPI 229913 -123.97 -83.29 -34.75 1.18 37.64 85.34 127.53
RES 229913 30.01 30.02 30.08 30.14 30.33 30.84 31.59
GasFee 229913 7.51 15.96 49.40 154.81 459.86 1201.32 2275.59
Rev 229913 -2311.89 -1234.57 -501.99 -200.25 -81.52 -23.51 13.06

MidGas

RPI 584806 -123.97 -82.24 -33.73 1.98 38.56 88.35 132.43
RES 584806 30.01 30.03 30.10 30.19 30.51 31.43 33.05
GasFee 584806 4.33 9.99 33.69 107.05 336.11 903.46 1692.12
Rev 584806 -1727.67 -941.11 -383.61 -154.92 -62.05 -8.58 32.38

HighGas

RPI 259592 -118.47 -77.82 -29.85 6.33 45.81 100.18 148.67
RES 259592 30.04 30.09 30.17 30.46 31.65 36.43 39.62
GasFee 259592 2.21 3.59 13.92 59.63 187.57 545.29 1057.69
Rev 259592 -1095.92 -589.20 -243.60 -105.26 -33.30 26.52 74.48

ETH-DAI

LowGas

RPI 114421 -125.69 -82.46 -32.77 1.59 37.32 87.57 132.62
RES 114421 30.00 30.01 30.08 30.14 30.36 31.15 32.65
GasFee 114421 5.53 12.75 46.35 166.06 555.62 1642.26 3488.11
Rev 114421 -3517.76 -1674.85 -596.51 -211.02 -78.74 -21.90 17.97

MidGas

RPI 276004 -124.97 -80.61 -30.85 2.86 39.06 91.77 137.99
RES 276004 30.01 30.02 30.10 30.19 30.60 32.43 35.98
GasFee 276004 2.94 6.77 28.56 110.50 391.19 1219.73 2573.99
Rev 276004 -2615.18 -1252.30 -436.41 -158.58 -57.98 -3.18 41.23

HighGas

RPI 125957 -114.47 -72.82 -24.66 9.03 50.20 108.79 160.72
RES 125957 30.02 30.08 30.16 30.55 33.20 39.38 43.32
GasFee 125957 1.63 2.58 7.67 49.15 203.58 674.95 1495.18
Rev 125957 -1523.08 -713.64 -257.94 -96.28 -22.27 40.58 92.62

“non-competition trades”.

To sum up, results from both the structural VAR results and the following revenue analysis

favor the second channel as opposed to the first: traders bid high blockchain fees in order to lower

the execution risk of their orders and thus realize a profit from the information. It is not likely that

they bid high blockchain fees in order to win the competition from other traders.
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(c) NonStable-NonStable token pairs. All trade flow variables are denominated in ETH.

N 5% 10% 25% 50% 75% 90% 95%
Pair GasLevel Component

WBTC-ETH

LowGas

RPI 29383 -73.87 -47.49 -17.24 1.80 22.39 53.82 80.97
RES 29383 30.01 30.03 30.11 30.19 30.56 31.99 34.11
GasFee 29383 2.63 6.24 26.34 106.92 401.95 1254.80 2594.36
Rev 29383 -2630.46 -1284.96 -436.11 -145.92 -58.30 -22.86 0.94

MidGas

RPI 65471 -73.55 -46.32 -15.44 3.99 27.59 62.07 93.24
RES 65471 30.02 30.06 30.13 30.31 31.27 34.42 37.52
GasFee 65471 1.55 2.85 11.74 63.52 266.62 943.94 2134.96
Rev 65471 -2166.65 -974.61 -305.03 -104.84 -39.54 -2.35 29.73

HighGas

RPI 32540 -65.52 -38.58 -9.23 10.78 40.22 82.60 119.19
RES 32540 30.06 30.11 30.25 31.13 34.21 38.41 41.36
GasFee 32540 1.32 2.14 4.79 21.45 121.67 497.28 1132.20
Rev 32540 -1167.05 -535.44 -166.87 -57.87 -13.90 30.47 67.32

LINK-ETH

LowGas

RPI 17207 -134.39 -86.75 -32.53 2.54 39.16 92.00 139.33
RES 17207 30.05 30.10 30.19 30.49 31.42 34.15 37.56
GasFee 17207 5.29 10.06 31.33 98.86 316.25 905.84 1744.66
Rev 17207 -1775.67 -939.25 -369.41 -147.77 -58.62 -5.51 36.21

MidGas

RPI 38151 -131.81 -80.34 -27.56 6.66 46.67 105.48 161.86
RES 38151 30.07 30.12 30.28 30.92 33.42 39.41 44.46
GasFee 38151 3.05 5.32 14.85 58.29 212.81 680.46 1418.33
Rev 38151 -1453.14 -733.25 -277.22 -106.44 -33.60 27.95 84.61

HighGas

RPI 18384 -106.42 -63.94 -14.62 22.15 71.07 140.14 203.05
RES 18384 30.13 30.25 31.00 34.17 39.06 44.61 49.64
GasFee 18384 3.08 4.34 7.68 19.48 85.34 360.85 847.79
Rev 18384 -896.66 -421.37 -154.77 -49.52 9.90 78.80 139.72

AAVE-ETH

LowGas

RPI 7260 -197.29 -131.80 -53.59 5.52 68.95 154.31 227.07
RES 7260 30.10 30.15 30.35 31.17 34.29 42.26 49.62
GasFee 7260 6.19 11.91 37.99 138.28 458.67 1194.60 2307.88
Rev 7260 -2345.24 -1239.36 -509.94 -210.04 -64.11 30.21 103.30

MidGas

RPI 16861 -189.73 -121.94 -40.24 20.92 94.55 194.24 275.49
RES 16861 30.13 30.20 30.75 33.68 43.36 53.17 64.78
GasFee 16861 3.92 6.60 14.90 59.11 290.04 930.24 1905.84
Rev 16861 -1945.75 -962.48 -360.62 -123.10 -7.47 98.01 181.15

HighGas

RPI 7920 -157.61 -94.87 -19.04 45.35 120.83 226.63 303.93
RES 7920 30.29 30.80 34.41 43.12 50.10 59.46 68.32
GasFee 7920 5.16 7.03 10.89 22.68 83.46 432.10 1060.93
Rev 7920 -1102.89 -499.44 -172.42 -44.55 41.05 145.42 224.54

6 Conclusion

Decentralized exchanges (DEXs) have gained a significant market share in crypto trading since

their inception. Unlike centralized exchanges (CEXs) which continuously execute incoming trans-

actions based on their arrival time, DEXs process transactions in batches and prioritize their exe-

cutions based on blockchain fees bid by their submitters. Thus, blockchain fee is a central element

and an important choice variable of traders in DEX trading. In this paper, we study the information
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Figure 4. Revenue distribution of DEX trades by gas fee level. This figure plots, for each token pair, the revenue
distribution of DEX trades gas price level. The vertical red line indicates zero revenue.
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(b) NonStable-Stable token pairs.
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content of blockchain fees. Using a structural vector-autoregressive structural (structural VAR)

model, we show that, compared with low-blockchain-fee trades, high-blockchain-fee trades not

only reveal more private information, but also respond more to public price innovations on CEXs.

We further test possible economic channels with a unique dataset of Ethereum mempool orders and

find that informed traders or public information arbitrageurs do not bid high blockchain fee due

to competition among them. Rather, it is likely that they do so to avoid the execution risk of their

orders due to blockchain crowding. Our results demonstrate that blockchain fees play a conducive

role in the price discovery process of crypto trading and market price efficiency.
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(c) NonStable-NonStable token pairs.
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Table 13. Trade revenue: “Competition trades” versus “non-competition trades”. This table reports the per-
centage of “competition trades” (i.e., trades likely involved in trader competition) versus the percentage of “non-
competition trades” (i.e., trades not likely involved in trader competition ) for the positive-revenue and negative-
revenue traders respectively.

Competition trades Non-competition trades
PairType Pair Revenue

Stable-Stable
USDC-USDT

% Negative 0.38 99.62
% Positive 2.98 97.02

DAI-USDT
% Negative 0.33 99.67
% Positive 0.00 100.00

NonStable-Stable

ETH-USDT
% Negative 0.42 99.58
% Positive 1.60 98.40

ETH-USDC
% Negative 0.45 99.55
% Positive 1.81 98.19

ETH-DAI
% Negative 0.50 99.50
% Positive 2.39 97.61

NonStable-NonStable

WBTC-ETH
% Negative 0.44 99.56
% Positive 2.06 97.94

LINK-ETH
% Negative 0.83 99.17
% Positive 1.92 98.08

AAVE-ETH
% Negative 0.89 99.11
% Positive 1.34 98.66
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A Robustness

Below we conduct a series of robustness checks.

A.1 Gas level classification

In our baseline structural VAR specification, we include (signed) DEX trade flows with high-, mid-

, and low-gas price level respectively. Specifically, high-gas (low-gas) DEX trade flow is computed

based on trades with a gas price above 75% (below 25%) quantile of the gas prices of all trades

in the past 20 blocks on a rolling window basis.10 On the one hand, a too short window makes

our quantile estimates noisy. For example, if we only use trades in the current block to implement

the classification, two trades with very similar gas prices will fall into different categories. On the

other hand, a too long window might include trades with gas prices too distant to reflect the current

crowding level of the blockchain. Thus, we set the window length to be 20 in the baseline results

to strike a balance.

As a robustness check, we try two different window lengths, 5 blocks and 10 blocks, to classify

DEX trades and then redo the structural VAR estimation. Table A1 reports the estimation results

of the cumulative return impulse responses based on DEX trade flows from the two alternative gas

level classification. It shows that the results are largely unchanged compared with the baseline

results in Table 5.

A.2 Lag order choice

In our baseline specification for the structural VAR model, we include lagged return and trade flow

variables of the last five blocks. As a robustness check, we vary the number of lags included in

the structural VAR specification. Table A2 report the return impulse responses when the number

of lags is set to 10 and 20 respectively. It shows that the results are qualitatively the same as the

10See Section 4 for details of our classification scheme.
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Table A1. Cumulative impulse responses between CEX return and DEX trade flows: Gas price level classifica-
tion based on a rolling window of alternative numbers of blocks. This table reports the impulse responses between
the CEX return and DEX trade flows with different gas price levels based on alternative classification rule, cumulative
over 20 blocks. Impulse responses are obtained by estimating the structural VAR model specified in Equation 2. The
estimation is done for each pair-day and statistical inference is based on pair-day estimates. Row variables are response
variables and column variables are shock variables. CEX return is in basis point. DEX trade flows are standardized
and thus in their standard deviations. *, ** and *** indicate significance levels at 1%, 5% and 10% respectively.

(a) Gas level classification based on a rolling window of 10 blocks.

rCEX
t xLowGas-DEX

t xMidGas-DEX
t xHighGas-DEX

t

PairType Variable

Stable-Stable

rCEX
t 0.6*** 0.42 0.07 0.02

(0.01) (0.42) (0.11) (0.04)
xLowGas-DEX

t 0.0 0.97*** −0.01 −0.03***
(0.01) (0.02) (0.02) (0.01)

xMidGas-DEX
t 0.0 −0.13* 0.9*** −0.07***

(0.01) (0.07) (0.03) (0.02)
xHighGas-DEX

t 0.01 −0.02 −0.22*** 0.81***
(0.01) (0.1) (0.03) (0.02)

NonStable-Stable

rCEX
t 0.97*** 0.03 0.52*** 3.38***

(0.01) (0.05) (0.08) (0.19)
xLowGas-DEX

t 0.0*** 1.01*** −0.01 −0.01*
(0.0) (0.02) (0.01) (0.01)

xMidGas-DEX
t 0.01*** −0.08*** 0.97*** 0.05***

(0.0) (0.02) (0.01) (0.01)
xHighGas-DEX

t 0.03*** −0.13*** −0.22*** 1.06***
(0.0) (0.01) (0.02) (0.01)

NonStable-NonStable

rCEX
t 0.81*** 1.96*** 2.83*** 6.73***

(0.01) (0.34) (0.36) (0.56)
xLowGas-DEX

t 0.0*** 0.97*** −0.03** −0.04***
(0.0) (0.01) (0.01) (0.01)

xMidGas-DEX
t 0.01*** −0.06*** 0.98*** 0.03*

(0.0) (0.02) (0.01) (0.01)
xHighGas-DEX

t 0.02*** −0.08*** −0.15*** 1.05***
(0.0) (0.01) (0.02) (0.02)

baseline results.
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(b) Gas level classification based on a rolling window of 5 blocks.

rCEX
t xLowGas-DEX

t xMidGas-DEX
t xHighGas-DEX

t

PairType Variable

Stable-Stable

rCEX
t 0.59*** 0.71 0.2 0.04

(0.01) (0.57) (0.15) (0.05)
xLowGas-DEX

t 0.01 0.92*** −0.04** −0.04***
(0.01) (0.06) (0.02) (0.02)

xMidGas-DEX
t 0.0 −0.06 0.88*** −0.1***

(0.01) (0.05) (0.02) (0.02)
xHighGas-DEX

t 0.01 0.04 −0.26*** 0.86***
(0.01) (0.13) (0.04) (0.02)

NonStable-Stable

rCEX
t 0.97*** 0.12** 0.73*** 3.29***

(0.01) (0.05) (0.09) (0.19)
xLowGas-DEX

t 0.0*** 1.0*** −0.03*** −0.01
(0.0) (0.01) (0.01) (0.01)

xMidGas-DEX
t 0.02*** −0.07*** 0.97*** 0.08***

(0.0) (0.01) (0.01) (0.01)
xHighGas-DEX

t 0.03*** −0.12*** −0.21*** 1.03***
(0.0) (0.01) (0.02) (0.01)

NonStable-NonStable

rCEX
t 0.81*** 1.66*** 3.6*** 6.54***

(0.01) (0.32) (0.36) (0.55)
xLowGas-DEX

t 0.0*** 0.97*** −0.03*** −0.04***
(0.0) (0.01) (0.01) (0.01)

xMidGas-DEX
t 0.01*** −0.06*** 0.97*** 0.06***

(0.0) (0.01) (0.01) (0.02)
xHighGas-DEX

t 0.02*** −0.1*** −0.12*** 1.03***
(0.0) (0.01) (0.02) (0.01)
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Table A2. Cumulative impulse responses of CEX return and DEX trade flows with different gas price levels:
Alternative number of lags in the structural VAR specification. This table reports the impulse responses between
the CEX return and DEX trade flow variables based on alternative numbers of lags included in the structural VAR esti-
mation, cumulative over 20 blocks. Impulse responses are obtained by estimating the structural VAR model specified
in Equation 2. The estimation is done for each pair-day and statistical inference is based on pair-day estimates. Row
variables are response variables and column variables are shock variables. CEX return is in basis point. DEX trade
flows are standardized and thus in their standard deviations. *, ** and *** indicate significance levels at 1%, 5% and
10% respectively.

(a) 10 lags of CEX return and DEX trade flows included in the structural VAR.

rCEX
t xLowGas-DEX

t xMidGas-DEX
t xHighGas-DEX

t

PairType Variable

Stable-Stable

rCEX
t 0.51*** 0.33 0.06 0.03

(0.01) (0.3) (0.13) (0.04)
xLowGas-DEX

t 0.0 0.9*** −0.08*** −0.07***
(0.01) (0.03) (0.02) (0.01)

xMidGas-DEX
t 0.0 −0.2*** 0.83*** −0.11***

(0.01) (0.08) (0.04) (0.02)
xHighGas-DEX

t 0.01 −0.12*** −0.3*** 0.71***
(0.01) (0.04) (0.03) (0.02)

NonStable-Stable

rCEX
t 0.96*** 0.0 0.54*** 3.42***

(0.01) (0.07) (0.11) (0.21)
xLowGas-DEX

t 0.0*** 1.01*** −0.02*** −0.03***
(0.0) (0.02) (0.01) (0.01)

xMidGas-DEX
t 0.02*** −0.09*** 0.97*** 0.0

(0.0) (0.02) (0.01) (0.01)
xHighGas-DEX

t 0.05*** −0.16*** −0.27*** 1.07***
(0.0) (0.02) (0.02) (0.01)

NonStable-NonStable

rCEX
t 0.77*** 1.88*** 3.5*** 6.89***

(0.01) (0.41) (0.44) (0.65)
xLowGas-DEX

t 0.0*** 0.97*** 0.01 −0.05***
(0.0) (0.02) (0.02) (0.02)

xMidGas-DEX
t 0.01*** −0.07*** 0.95*** −0.01

(0.0) (0.02) (0.01) (0.02)
xHighGas-DEX

t 0.03*** −0.1*** −0.2*** 1.05***
(0.0) (0.02) (0.02) (0.02)
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(b) 20 lags of CEX return and DEX trade flows included in the structural VAR.

rCEX
t xLowGas-DEX

t xMidGas-DEX
t xHighGas-DEX

t

PairType Variable

Stable-Stable

rCEX
t 0.4*** 0.26 0.06 0.11

(0.02) (0.25) (0.12) (0.08)
xLowGas-DEX

t −0.02 0.76*** −0.24*** −0.13***
(0.02) (0.16) (0.09) (0.05)

xMidGas-DEX
t 0.0 −0.29*** 0.75*** −0.22***

(0.02) (0.1) (0.05) (0.03)
xHighGas-DEX

t 0.02 −0.22*** −0.29*** 0.68***
(0.02) (0.04) (0.1) (0.05)

NonStable-Stable

rCEX
t 0.94*** 0.04 0.57*** 3.28***

(0.01) (0.11) (0.14) (0.2)
xLowGas-DEX

t 0.01*** 1.01*** −0.02* −0.05***
(0.0) (0.02) (0.01) (0.01)

xMidGas-DEX
t 0.03*** −0.09*** 0.95*** −0.02**

(0.0) (0.02) (0.01) (0.01)
xHighGas-DEX

t 0.08*** −0.19*** −0.35*** 1.05***
(0.0) (0.02) (0.02) (0.01)

NonStable-NonStable

rCEX
t 0.71*** 1.32*** 3.89*** 6.86***

(0.02) (0.54) (0.6) (0.61)
xLowGas-DEX

t 0.0*** 0.95*** −0.03 −0.06***
(0.0) (0.02) (0.02) (0.02)

xMidGas-DEX
t 0.02*** −0.11*** 0.94*** 0.0

(0.0) (0.02) (0.02) (0.02)
xHighGas-DEX

t 0.04*** −0.14*** −0.25*** 1.0***
(0.0) (0.02) (0.03) (0.03)
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