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Abstract

I study a dynamic model of consumer privacy and platform data collection. In each period,

consumers choose their level of platform activity. Greater activity generates more precise in-

formation about the consumer, thereby increasing platform profits. Although consumers value

privacy, a platform is able to collect information by gradually lowering the level of privacy

protection. In the long-run, consumers become “addicted” to the platform, whereby they lose

privacy and receive low payoffs, but continue to choose high activity levels. Competition is

unhelpful because consumers have a higher incentive to use a platform to which they have

lower privacy.
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1 Introduction

Online platforms, such as Amazon, Facebook, Google, and Uber, analyze user activities and collect

a large amount of data. This data collection may improve their services and benefit consumers.

However, it also raises important concerns among consumers and policymakers (Crémer et al.,

2019; Furman et al., 2019; Morton et al., 2019).

Consider a consumer (she) and a social media platform (it). The consumer writes posts, shares

photos, and reads news on the platform. The platform analyzes her activity and collects data such

as her race, location, and political preferences. The platform can then generate revenue—e.g., via

improved targeted advertising. The consumer faces a trade-off: On the one hand, she enjoys the

services provided by the platform. On the other hand, the consumer may value her privacy, or be

concerned about the risk of data leakage, identity theft, and price or non-price discrimination.1 The

latter is a “privacy cost” of using the platform. If the consumer anticipates a high privacy cost, she

may use the platform less actively, or may not join it in the first place. The platform can influence

her decision through its privacy policy. For example, Facebook committed to not use cookies to

track users.2

I formalize this story as a dynamic model: In each period, a consumer chooses her level of

platform activity. Based on the level of activity, the platform observes a signal about the consumer’s

time-invariant type. The precision of the signal is increasing in the activity level, but decreasing

in the platform’s privacy level, which specifies the amount of noise added to the signal. The

platform’s per-period profit is increasing but the consumer’s payoff is decreasing in the amount of

information the platform has collected. Thus, the consumer chooses activity levels balancing the

benefits from the service and the privacy costs. Anticipating the consumer’s behavior, the platform

sets privacy levels to maximize profits.

The key idea is that, when the consumer has less privacy, she faces a lower marginal privacy

cost of using the same platform, repeatedly. For example, if Google already knows a lot about a

consumer, she might not care about letting Google Maps track her location. In an extreme case,

if the platform knows everything, then the marginal privacy cost is zero, because the consumer’s

1Such concerns are highlighted by, for example, the Cambridge Analytica scandal.
2In 2004, Facebook’s privacy policy stated that “we do not and will not use cookies to collect private information

from any user.” https://web.archive.org/web/20050107221705/http://www.thefacebook.
com/policy.php (accessed on May 19, 2020)
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activity on a platform no longer affects what it knows about her.

The paper examines the dynamic implications of this idea. First, in equilibrium, the consumer

chooses higher activity levels but receives lower payoffs over time. In the long-run, the consumer

loses privacy and incurs a high privacy cost, but behaves as if there is no privacy cost. The pri-

vacy loss occurs even when the consumer values privacy highly. To induce such an outcome, the

platform sets high privacy levels in early periods to incentivize the consumer to use the platform.

However, the platform later reduces the privacy level to accelerate data collection. The baseline

model assumes that the consumer is myopic and the platform can fully commit to future privacy

levels. However, the result holds even when the consumer is forward-looking and the platform

only has short-run commitment power (Section 6).

The decreasing marginal privacy cost implies that the consumer is more willing to use a plat-

form to which she has less privacy. This consumer’s tendency makes competition less effective.

To see this, suppose that an incumbent (e.g., Google) has a lot of data on a consumer. Then, even

if the entrant (e.g., DuckDuckGo) offers a better privacy protection, the consumer may stick to the

incumbent since she incurs negligible marginal privacy cost of using the incumbent. As a result,

the incumbent can keep collecting data without losing the consumer to the entrant.

I consider several privacy regulations. First, mandating the platform to adopt a strict privacy

policy may perversely lower the privacy and welfare of consumers in the long-run. In contrast, the

“right to be forgotten,” which enables consumers to erase past information, may enhance consumer

welfare and induce competition. Thus, ex ante and ex post privacy protections may have different

impacts in a dynamic environment.

The paper has implications for consumer privacy. First, the consumer’s long-run behavior

seems consistent with the so-called privacy paradox: Consumers express concerns about data col-

lection but actively share data with third parties (Acquisti et al., 2016). Second, the platform’s

equilibrium strategy rationalizes how online platforms, such as Facebook, seem to have relaxed its

privacy policy over time. Third, the paper helps us understand why competition using better pri-

vacy policies might not be successful (Marthews and Tucker, 2019). Moreover, the results clarify

how a privacy regulation such as the right to be forgotten can promote competition. The result also

points to a challenge to firms that offer privacy-friendly alternatives to dominant platforms. Finally,

the paper offers novel policy implications, such as restricting data collection hurting consumers.
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This paper contributes to the literature on markets for data and the economics of privacy. First,

the paper is related to Acemoglu et al. (2019), Bergemann et al. (2019), and Choi et al. (2019).

They consider static models in which a platform collects data in exchange for monetary compen-

sation, and the data of some consumers reveal information about others. This “data externality”

lowers the incentive of each consumer to protect privacy, leading to low compensation and exces-

sive data sharing.3 The economic force of this paper is similar to theirs: If a consumer provides

data today, she has a lower incentive to protect privacy in the future. However, this paper considers

a dynamic model, which enables me to study new issues. Specifically, I consider market entry,

commitment to privacy policies, the right to be forgotten, data retention, consumer myopia, and

the dynamics of privacy policies. My paper is also different from these papers in how data are gen-

erated. They assume that consumers hold data at the outset, and platforms buy data in exchange

for monetary compensation. In contrast, in this paper, data arise as a byproduct of activity from

which consumers derive utilities. This formulation directly applies to online platforms that do not

pay consumers for data.

This paper also relates to the recent work on dynamic competition in digital markets. Hagiu

and Wright (2020) study “data-enabled learning” whereby firms can improve their products and

services through learning from the data they obtain from their customers. Prufer and Schottmüller

(2017) assume that the cost of investing in quality is decreasing in the firm’s past sales, and greater

investment in quality leads to higher demand in the current period. My paper contributes to this

literature by considering a less-explored setting in which data collection lowers consumer welfare.

This assumption enables me to study issues related to consumer privacy. Hagiu and Wright (2020)

allow price competition and consider a rich learning dynamics incorporating “within-user” and

“across-user” learning. In contrast, I abstract from pricing, and focus on within-user learning.

How the consumer’s incentive changes over time in my model is similar to the one in career

concern models originated with Holmström (1999). In career concern models, a young worker,

whose ability has not yet revealed to the market, works hard to influence the market’s belief about

her ability. In my model, a consumer who has not yet lost privacy uses the platform less actively

to generate less information. Over time, the private information of the consumer and the worker

3Relatedly, Easley et al. (2018) consider (positive) data externalities in a model where market transaction generates
data.
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are revealed, and they have lower incentives to engage in signal-jamming. Despite this connection,

the two signal-jamming activities are quite different. In career concern models, the market wants

the worker to engage in signal-jamming, which corresponds to higher effort. Thus, there is a trade-

off between learning the worker’s ability and motivating high effort (i.e., Hörner and Lambert

2018). In my model, the platform wants the consumer to engage less in signal jamming. Thus,

the platform prefers to collect information for not only increasing profit today but motivating the

consumer to raise activity levels in the future. Many of my results come from this complementarity

between data collection and higher activity levels. Finally, the analysis of competition and privacy

regulations do not have counterparts in this literature.

Bonatti and Cisternas (2020) study consumer privacy in a continuous-time dynamic model.

They consider a long-lived consumer with short-lived sellers. Sellers can learn about consumer

preferences based on scores that aggregate purchase histories, and sellers use information for price

discrimination. In contrast, I consider long-lived platforms and abstract away from how platforms

use consumer information. Fainmesser et al. (2019) study the optimal design of a platform to store

data and invest in information security. They consider a platform that cares about both the activity

levels of consumers and the amount of data it can extract. They study how different objectives

lead to different platform designs. I adopt simpler preferences for consumers and platforms, but

consider a dynamic environment. Hörner and Skrzypacz (2016) considers a dynamic game of

selling information. They show that the optimal selling strategy transmits information gradually. In

my model, the benefit of gradualism appears in the platform’s optimal privacy policy. Casadesus-

Masanell and Hervas-Drane (2015) considers a static vertical differentiation framework in which

firms compete in price and the level of privacy protection.

The rest of the paper is as follows. Section 2 presents a model of a monopoly platform and

a myopic consumer. Section 3 presents the long-run equilibrium outcome and characterizes the

equilibrium privacy policy of the platform. Section 4 considers platform competition. Section 5

studies the incentive of the consumer or platforms to erase past information. Section 6 considers

a forward-looking consumer. Section 7 considers extensions, including consumer heterogeneity,

time-varying types, and general payoff functions.
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2 A Dynamic Model of Privacy Choices

Time is discrete and infinite, indexed by t ∈ N. There are a consumer (she) and a platform (it).

The consumer’s type X is drawn from a normal distribution N (0, σ2
0). X is realized before t = 1

and fixed over time. The consumer does not observe X .4 The platform does not observe X but

receives signals about it.

In each period t ∈ N, the consumer publicly chooses an activity level at ≥ 0. After the con-

sumer chooses at, the platform privately observes a signal st = X+εt, where εt ∼ N
(

0, 1
at

+ γt

)
.

A greater at reduces the variance of εt and makes st more informative about X , whereas a greater

γt makes st less informative about X .5 γt ≥ 0 is the privacy level of the platform in period t. All

the random variables, X and (εt)t∈N, are mutually independent.

The payoffs are as follows. Suppose that the consumer has chosen activity levelsat = (a1, . . . , at)

and the platform has chosen privacy levels γt = (γ1, . . . , γt) up to period t. At the end of period t,

the platform receives a payoff of σ2
0 − σ2

t (at,γt) ≥ 0. σ2
t (at,γt) is the variance of the conditional

distribution of X given (at,γt), derived from Bayes’ rule.6 I take (σ2
t (·, ·))t∈N as a primitive. A

lower σ2
t (at,γt) means that the platform has a more accurate estimate of X , which means that the

consumer has less privacy. For any t and τ ≤ t, σ2
t (at,γt) is decreasing in aτ , increasing in γτ ,

and independent of sτ .7 Where it does not cause confusion, I write σ2
t (at,γt) as σ2

t . The platform

discounts future payoffs with a discount factor δP ∈ (0, 1).

The consumer’s payoff in period t is U(at,γt) := u(at) − v [σ2
0 − σ2

t (at,γt)]. The first term

u(at) is the gross benefit of using the platform. u : R+ → R is strictly concave, continuously differ-

entiable, maximized at amax ∈ (0,∞), and satisfies u(0) = 0. The second term v [σ2
0 − σ2

t (at,γt)]

is a privacy cost, which captures the negative impact of data collection on the consumer. v ∈ R+

is the exogenous parameter that captures the value of privacy. The baseline model assumes that

the consumer is myopic, i.e., she chooses at to maximize U(at,γt) in each period t. Section 6

4Even if the consumer privately observes X , all the results hold with respect to a pooling equilibrium in which the
consumer of all types chooses the same activity level after any history. Unobservable X greatly simplifies exposition
without changing the insights.

5If at = 0, then treat st as a pure noise that is independent of X .
6The equivalent formulation is that the platform observes (at, st), chooses bt ∈ R, and obtains an ex post payoff

of −(X − bt)2, which the platform does not observe. Writing the payoffs in terms of σ2
t simplifies exposition. See

Acemoglu et al. (2019) for the further discussion.
7Throughout the paper, “increasing” means “non-decreasing.” Similar conventions apply to “decreasing,”

“higher,” and “lower,” and so on.
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shows that most of the results hold even if the consumer is forward-looking. However, the myopia

assumption leads to cleaner results.

Payoffs are normalized so that if at = 0 for all t, then the platform and the consumer obtain

zero payoffs in all periods. The primitives, σ2
0 , u(·), and v, are commonly known to the consumer

and the platform (Section 7 assumes that the consumer privately knows v).

The timing of the game is as follows. Before t = 1, the platform commits to a privacy policy

γ = (γ1, γ2, . . . ) ∈ R∞+ . After observing γ, the consumer chooses an activity level in each period.

An equilibrium is a strategy profile such that (i) the consumer myopically chooses at to maximize

U(at,γt) following every history, breaking ties in favor of the highest activity level, and (ii) the

platform, anticipating (i), optimally chooses a privacy policy γ before t = 1.

The model does not explicitly capture the consumer’s decision to join the platform. However,

we may say that the consumer joins in period t if t is the first period such that at is positive. We

could extend the model so that the consumer incurs a one-time cost κ > 0 to join. The results

continue to hold if κ is not too high.

2.1 Discussion of Modeling Assumptions

The model is not intended to capture all the details of how a platform collects and uses consumer

data. Instead, I set up the model to highlight a set of conditions under which consumer privacy is

difficult to sustain and data-driven platforms tend to be profitable. This subsection discusses which

modeling assumptions are crucial for the main results.

2.1.1 Assumptions that are Crucial for the Results

Data generation. In practice, consumer data are generated along with their activity on a platform,

such as browsing contents and liking posts. The model captures such a situation by assuming that

the precision of a signal is increasing in the activity level. To focus cleanly on the consumer’s

incentives to protect privacy, I abstract from belief manipulation, such as a consumer strategically

manipulating browsing history to influence the platform’s inference.

Privacy cost function. The privacy cost v(σ2
0−σ2

t ) captures monetary or non-monetary reasons for

which a consumer wants a platform to have less information. For instance, a consumer may have
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intrinsic preferences for privacy (Kummer and Schulte, 2019; Lin, 2019; Tang, 2019). For another

instance, a consumer may consider the risk of data breach, identity theft, and price or non-price

discrimination by platforms and third parties. Section 7 shows that the main insight continues to

hold for a privacy cost that is non-linear and non-monotonic in σ2
t . In reality, the gross utility of

using a platform may also depend on how much information the platform has. However, I do not

consider such an extension.

Privacy cost is sunk. Even if the consumer chooses as = 0 for all s ≥ t, she incurs a privacy

cost of −v(σ2
0 − σ2

t ) in period s because σ2
s = σ2

t . This observation is crucial: The consumer

cannot delete data collected in the past, and thus she perceives the privacy cost from past data

collection as sunk. This assumption reflects the difficulty of deleting digital data, which is referred

to as “data persistence” (Tucker, 2018). For instance, suppose that a platform collects sensitive

personal information and stores it even after users quit. Then, a consumer may face a risk of

data leakage even when she is not active on the platform. For another instance, if a consumer

inadvertently discloses some sensitive information to other users on a platform, then she may incur

a psychological cost from the fact that other users know the information. Such a cost is likely to

persist even if the consumer is inactive on the platform. Since the consumer regards the privacy

cost as sunk, she chooses activity levels based on the marginal privacy cost rather than the level

of privacy cost. This assumption also enables us to think what privacy regulation can improve

consumer privacy by making the privacy cost non-sunk. I will later show that a regulation in line

with “the right to be forgotten” achieves this goal. Finally, Section 7 considers an extension in

which the consumer perceives only a fraction of the privacy cost as sunk.

Consumer’s type is constant over time. This assumption implies that the consumer’s activity to-

day affects her welfare in the future though the privacy cost. The assumption is suitable if X is

relatively persistent characteristics such as one’s race and political affiliation. Section 7 presents a

numerical analysis for an imperfectly persistent type and shows that the main insight extends.

2.1.2 Assumptions that are Not Crucial for the Results

Single consumer. I deliberately consider a single consumer to emphasize that the results do not

rely on interactions among multiple consumers. Since the consumer’s type is Gaussian, one could

easily incorporate multiple consumers with “data externalities” as in Acemoglu et al. (2019) and
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Bergemann et al. (2019) by assuming that their types are correlated. I conjecture that incorporating

data externalities does not change the result. Indeed, the data externality reduces a consumer’s

incentive to protect privacy, but such an economic force already exists in the current model.

Consumer myopia. I consider a myopic consumer for two reasons. First, the myopia assumption

captures the idea that, when a consumer uses a platform, she may not take into account how the data

collected today may be misused against her in the future. This myopia assumption seems plausible

because users may not necessarily foresee the future consequences of data sharing.8 Second, the

results under a monopoly platform continue to hold even if the consumer is arbitrarily patient

(Section 6). Thus, I start with the myopia assumption to deliver clear intuitions.

Value of privacy v is commonly known. Section 7 shows that the results under a monopoly platform

continue to hold even if the consumer is privately informed of v. In other words, the results hold

when a population of consumers have heterogeneous v’s, and the platform has to set a privacy

policy that is common to all consumers.

Privacy policies. A platform either chooses a privacy policy at the outset (as in the baseline model)

or sets a privacy level at the beginning of each period. They are not fully general. For example, we

might consider a mechanism that maps each history of activity levels (as)
t
s=1 to a privacy level γt in

period t. However, such a mechanism seems impractical and prohibitively costly to communicate

to consumers, and it would not change the long-run outcome.

Platform’s payoffs. The platform’s payoff can be any decreasing function of (σ2
t )t∈N. All the results

and proofs continue to hold without modification (see Section 7 for details).

3 Monopoly Platform

I begin with studying the consumer’s behavior, taking the platform’s strategy as given. Then, I

present the long-run equilibrium outcome. After that, I characterize the platform’s equilibrium

privacy policy.

8For example, Tucker (2018) states that “Introducing the potential for myopia or hyperbolic discounting into the
way we model privacy choices over the creation of data seems, therefore, an important step.”
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3.1 Consumer Behavior

Bayes’ rule implies9

σ2
t (at,γt) =

1
1

σ2
t−1(at−1,γt−1)

+ 1
1
at

+γt

. (1)

Thus, in each period t, the consumer chooses at to maximize

u(at)− v
[
σ2

0 − σ2
t (at,γt)

]
=u(at)− v

σ2
0 −

1
1

σ2
t−1(at−1,γt−1)

+ 1
1
at

+γt

 ,
taking σ2

t−1(at−1,γt−1) and γt as given. Define the privacy cost function asC(a, γ, σ2) := v

(
σ2

0 − 1
1
σ2 + 1

1
a+γ

)
.

The following lemma summarizes the key properties of the privacy costC and the marginal privacy

cost ∂C
∂a

.

Lemma 1. The following holds.

1. C(a, γ, σ2) is decreasing in γ and σ2, and increasing in a.

2.
∂C

∂a
(a, γ, σ2) is decreasing in γ and increasing in σ2.

Proof. Point 1 follows from equation (1). Point 2 follows from

∂C

∂a
= v ·

1
a2

( 1
a

+γ)
2(

1
σ2 + 1

1
a

+γ

)2 =
v(

1
σ2 (1 + γa) + a

)2 . (2)

Lemma 1 implies that the privacy cost C increases but the marginal cost ∂C
∂a

decreases when

the consumer has less privacy (i.e., σ2 is small). Thus, if the consumer has less privacy, her

utility is low but the marginal utility of using the platform is high. Intuitively, once a platform has

9The equation holds because if x|µ ∼ N(µ, σ2) and µ ∼ N(µ0, σ
2
0), then µ|x ∼

N

(
σ2
0

σ2+σ2
0
x+ σ2

σ2+σ2
0
µ0,
(

1
σ2
0

+ 1
σ2

)−1)
.
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collected a lot of information about a consumer, then the consumer’s activity today does not affect

the platform’s learning much, leading to a lower marginal privacy cost.

Another important observation from Lemma 1 is that the marginal privacy cost is decreasing in

the privacy level. Thus, the platform can incentivize the consumer to choose a higher activity level

by committing to add a noise to the signal. Thus, the platform may be able to improve the quality

of a signal by committing to underuse it.

To state the next result, let a∗(γ, σ2) denote the optimal activity level given a privacy level γ in

the current period and the conditional variance σ2 from the previous period:

a∗(γ, σ2) := max

arg max
a≥0

u(a)− v

σ2
0 −

1
1

σ2
+

1
1
a

+ γ


 . (3)

The following result follows from Lemma 1 (see Appendix A for the proof). Recall amax =

arg maxa≥0 u(a).

Lemma 2. a∗(γ, σ2) is increasing in γ and decreasing in σ2. For any (γ, σ2), limγ̂→∞ a
∗(γ̂, σ2) =

limσ̂2→0 a
∗(γ, σ̂2) = amax.

The next result presents the equilibrium of a subgame in which the platform has committed to

a stationary privacy policy (see Appendix B for the proof).

Proposition 1. Suppose that the platform chooses a stationary privacy policy, i.e., γt = γ, ∀t ∈ N.

Let (a∗t )t∈N denote the equilibrium activity levels of this subgame. There is a cutoff value v∗(γ) ∈

R+ such that:

1. If v < v∗(γ), then a∗t increases in t, lim
t→∞

a∗t = amax, and lim
t→∞

σ2
t = 0. The consumer’s

per-period payoff decreases over time.

2. If v > v∗(γ), then a∗t = 0 and σ2
t = σ2

0 for all t ∈ N.

Moreover, v∗(γ) is increasing in γ, and limγ→∞ v
∗(γ) =∞.

The intuition is as follows. If the value of privacy is low, then the consumer prefers a positive

activity level a∗1 > 0 in t = 1. The consumer activity generates information, which reduces her

10



payoff but increases the marginal net benefit of using the platform. Thus, in t = 2, the consumer

chooses a∗2 ≥ a∗1. Repeating this argument, we can conclude that a∗t increases over time. The

platform can then use the signals and perfectly learn the consumer’s type as t → ∞. Perfect

learning in t → ∞ implies that the marginal privacy cost goes to zero, and thus a∗t → amax.

To sum up, if v is below the cutoff, the consumer eventually loses her privacy but behaves as if

there is no privacy cost. In contrast, the consumer with a high v does not use the platform (Point

2). Finally, v∗(γ) is increasing in γ because a higher privacy level reduces the cost of using the

platform.

Proposition 1 highlights a perverse effect of privacy regulation: Suppose that a regulator, who

cares about consumer privacy, mandates a stricter privacy policy, i.e., γt = γ becomes γt = γ′ > γ

for all t ∈ N. The result implies that this regulation increases the cutoff from v∗(γ) to v∗(γ′), and

expands the range of v’s under which the consumer loses privacy (Point 1). To see the welfare

implication, suppose v > u(amax)

σ2
0

holds. For a small γ, the consumer may choose a∗t = 0 and

obtain a payoff of zero in all periods. If the regulator enforces a large γ′, then the consumer

chooses a∗1 > 0. However, a∗1 > 0 implies (a∗t , σ
2
t ) → (amax, 0), and thus the consumer’s per-

period payoff converges to u(amax) − vσ2
0 < 0. Thus, the regulation can increase the consumer’s

per-period payoffs in the short-run but decrease them in the long-run. If the regulator cares about

the long-run consumer welfare, it may consider the regulation as detrimental.10

3.2 Equilibrium

I now present the equilibrium of the entire game (see Appendix C for the proof, which uses Propo-

sition 3 in the next subsection).

Proposition 2. Take any v ∈ R, and let (a∗t , γ
∗
t , σ

2
t )t∈N denote the outcome of any equilibrium.

Then,

lim
t→∞

a∗t = amax, lim
t→∞

γ∗t = 0, and lim
t→∞

σ2
t = 0. (4)

10The caveat “if the regulator cares about the long-run consumer welfare” is important, because regardless of the
consumer’s discount factor, a higher γ increases the consumer’s ex ante sum of discounted payoffs (which is equal to
the first-period payoff for a myopic consumer). A higher privacy level is undesirable only if the regulator has a higher
discount factor than the consumer.
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Moreover, for any T ∈ N, there is a v ∈ R such that, for any v ≥ v, any equilibrium privacy policy

satisfies γ∗t > 0 for all t ≤ T .

This result contrasts with Proposition 1 in that the privacy loss occurs for any v ∈ R. The

result also shows that if v is high, the equilibrium privacy policy is nonstationary: In early periods,

the platform sets positive privacy levels. In the long-run, the platform offers a vanishing level of

privacy. The long-run payoff of the consumer is u(amax)− vσ2
0 , which can be arbitrarily low for a

large v.

The intuition is as follows. In early periods, the platform does not know much about the

consumer. Then, consumer activity has a large impact on what the platform learns about her type.

Thus, the consumer faces a high marginal privacy cost, which discourages her from raising the

activity level. To reduce the marginal cost, the platform commits to a high privacy level and slowly

learns the consumer type. After a long period of interaction, the platform accurately knows the

consumer’s type, and thus she faces a low marginal cost. Thus, the platform can lower a privacy

level to accelerate learning.

Proposition 2 illustrates how the combination of decreasing marginal privacy cost and the plat-

form’s commitment to underuse data makes consumer privacy difficult to sustain. Indeed, if the

consumer faced an increasing convex loss of providing data, then the platform’s learning could

stop in the middle. If the platform had no commitment power, then the consumer might choose

at = 0, anticipating that she incurs a high privacy cost.

Figure 1 depicts the equilibrium dynamics in a numerical example.11 Figure 1(a) shows that the

platform offers a decreasing privacy level, hitting zero in t = 5. Figure 1(b) shows that the equi-

librium activity level first decreases but eventually approaches amax = 2. The non-monotonicity

of a∗t contrasts with the case of a stationary privacy policy in Proposition 1.12

3.3 Implications of Proposition 2

First, Proposition 2 gives an economic explanation of the so-called privacy paradox: Consumers

seem to casually share their data with online platforms, despite their demand for privacy and con-
11I compute the equilibrium strategy profile using Proposition 3.
12I have not managed to generally prove the non-monotonicity of (a∗t )t∈N. However, a numerical exercise suggests

that the non-monotonicity occurs for a wide range of parameters (v, σ2
0) under which the equilibrium privacy level is

strictly decreasing in early periods.

12



period
1 2 3 4 5 6 7 8 9 10

P
ri
v
a
c
y
 l
e
v
e
l

0

0.5

1

1.5

2

2.5

3

3.5

Figure 1(a): Privacy level γt

period
1 2 3 4 5 6 7 8 9 10

A
c
ti
v
ty

 l
e
v
e
l

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

Figure 1(b): Activity level at
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0 = 1.

cerns about data collection.13 One may view this puzzle as the long-run equilibrium outcome of

this model, where the consumer faces a high privacy cost and zero marginal cost. In contrast

to the explanation based on information externalities among consumers, the outcome in Propo-

sition 2 occurs without a priori market imperfection. The result also points to the difficulty of

applying the revealed preference argument to infer the value of privacy to a consumer. Indeed, a

consumer’s privacy choice in a single period may not tell much about his or her preferences for

privacy (v), if the choice is made after the consumer revealed much information in the past. More-

over, (a∗t , σ
2
t ) → (amax, 0) holds even if the consumer is forward-looking and arbitrarily patient

(Proposition 9).

Second, the result establishes a novel connection between consumer privacy problem and ra-

tional harmful addiction (Becker and Murphy, 1988). The connection comes from the observation

that the consumer’s utility is decreasing but marginal utility is increasing in the amount of infor-

mation collected in the past. One difference from a typical model of rational addiction is that

the platform can dynamically adjust the degree of addiction through its privacy policy. As a re-

sult, even if the consumer values privacy arbitrarily highly ex ante, she becomes “addicted” to the

platform.

13Acquisti et al. (2016) contains an insightful review of research on the privacy paradox. Recent empirical work,
for example, includes Athey et al. (2017).
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At an anecdotal level, the equilibrium strategy of the platform seems consistent with how the

privacy policies of online platforms have evolved. In 2004, Facebook’s privacy policy stated that

it would not use cookies to collect consumer information. In 2020, the privacy policy states that

it uses cookies to track consumers on and possibly off the website.14 Srinivasan (2019) describes

how Facebook has acquired dominance in the social media market:

“When Facebook entered the market, the consumer’s privacy was paramount. The

company prioritized privacy, as did its users—many of whom chose the platform over

others due to Facebook’s avowed commitment to preserving their privacy. Today,

however, accepting Facebook’s policies in order to use its service means accepting

broad-scale commercial surveillance.”

Fainmesser et al. (2019) describe how the business models of online platforms have changed

from the initial phase where they expand a user base to the mature phase where they monetize

collected information. The equilibrium dynamics Proposition 2 rationalize the described pattern.

3.4 Characterizing Equilibrium Privacy Policy

The following result characterizes the platform’s equilibrium privacy policy. Recall that a∗(γ, σ2)

is the activity level at chosen by the myopic consumer given γt = γ and σ2
t−1 = σ2.

Proposition 3. The equilibrium privacy policy (γ∗1 , γ
∗
2 , . . . ) is recursively defined as follows.

γ∗t ∈ arg min
γ≥0

1

a∗(γ, σ̂2
t−1)

+ γ, ∀t ∈ N, (5)

σ̂2
0 = σ2

0, (6)

σ̂2
t =

1
1

σ̂2
t−1

+ 1
1

a∗(γ∗t ,σ̂
2
t−1)

+γ∗t

,∀t ∈ N. (7)

Moreover, given any privacy policy γ, let (σ2
t )t∈N denote the conditional variances induced by the

consumer’s optimal behavior. Then, σ̂2
t ≤ σ2

t for all t ∈ N.

14In 2020, Facebook’s privacy policy states that “we use cookies if you have a Facebook account, use the Facebook
Products, including our website and apps, or visit other websites and apps that use the Facebook Products (including
the Like button or other Facebook Technologies).” https://www.facebook.com/policies/cookies
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Proof. Take any privacy policy (γt)t∈N, and let (σ2
t )t∈N denote the sequence of the conditional

variances induced by a∗(·, ·). I show σ̂2
t ≤ σ2

t for all t ∈ N. The inequality holds with equality for

t = 0. Take any τ ∈ N. Suppose σ̂2
t ≤ σ2

t for t = 0, . . . , τ − 1. It holds

σ2
τ =

1
1

σ2
τ−1

+ 1
1

a∗(γτ ,σ2
τ−1)

+γτ

≥ 1
1

σ̂2
τ−1

+ 1
1

a∗(γτ ,σ̂2
τ−1)

+γτ

≥ 1
1

σ̂2
τ−1

+ 1
1

a∗(γ∗τ ,σ̂2
τ−1)

+γ∗τ

= σ̂2
τ .

The first inequality follows from the inductive hypothesis and decreasing a∗(γ, ·). The second

inequality follows from (5). ∀t ∈ N, σ̂2
t ≤ σ2

t implies that the privacy policy described by (5), (6),

and (7) is optimal, because the platform obtains a greater profit than any other privacy policy in all

periods.

The objective of the minimization problem (5), 1
a∗(γ,σ̂2

t−1)
+ γ, is the variance of the noise εt in

the signal st = X + εt given the consumer’s best response. The minimization problem captures

the platform’s trade-off. On the one hand, a higher privacy level γ leads to a higher activity level,

which leads to a lower variance 1
a∗(γ,σ̂2

t−1)
of εt. On the other hand, given any activity level, a

higher γ lowers the informativeness of the signal. This cost is captured by the second term γ. The

platform chooses γ∗t by resolving this trade-off. As the platform solves (5) in each period, the

conditional variance evolves according to (7) with the initial condition (6).

The platform chooses its strategy to maximize the sum of discounted profits. However, the

equilibrium policy is as if the platform sets each γt to myopically maximize the precision of the

signal. The reason is follows. In principle, the platform chooses (say) γ1 to maximize the sum

of period-1 profit and the continuation value. The period-1 profit is increasing in the precision of

the signal in t = 1 by construction. As more information is generated in t = 1, the consumer

faces lower marginal costs and chooses higher activity levels in the future. Thus, the continuation

value is also increasing in the precision of the signal in t = 1. As a result, the platform can

maximize the sum of discounted profits by maximizing the informativeness of signal in t = 1. A

similar argument implies that the equilibrium privacy level in any period myopically maximizes

the informativeness of the signal in that period.

Proposition 3 implies that the platform does not require as strong a commitment power as

currently assumed.15 I say that the platform has short-run commitment power if it chooses a privacy
15The proof of the following result also reveals that the equilibrium outcome is independent of the platform’s
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level γt at the beginning of each period t (before the consumer chooses at) without committing to

future privacy levels.

Corollary 1. Let (a∗,γ∗) denote the equilibrium outcome of the baseline model in which the

platform can commit to any privacy policy before t = 1. The same outcome (a∗,γ∗) arises in an

equilibrium when the platform has short-run commitment power.

Proof. Suppose the platform only has short-run commitment power. Consider the following strat-

egy profile: Following every history with the conditional variance σ2, the platform sets γ ∈

arg minγ≥0
1

a∗(γ,σ2)
+ γ. The consumer always acts according to a∗(·, ·). By construction, (a∗,γ∗)

arises on the path of play. Any deviation by the platform increases the conditional variances in all

periods (Proposition 3). Thus, it has no profitable deviation.

The result shows that long-run commitment has no value relative to short-run commitment. In

contrast, the platform could be strictly worse off if it has no commitment power: If the platform

sets γt after observing at, then in any equilibrium, the platform sets γt = 0 whenever at > 0.

Anticipating this, the consumer chooses a lower activity level than under the short-run or long-run

commitment. I argue that short-run commitment is a reasonable assumption in practice, because a

platform could be sanctioned for the outright violation of its privacy policy.

4 Platform Competition

I now explore the effect of competition between two platforms, an incumbent (I) and an entrant

(E). I is in the market from the beginning of t = 1. In period t∗ ≥ 2, E enters the market. t∗ is

exogenous, deterministic, and known to I at the outset.16

Before the entry (t < t∗), the consumer chooses the activity level aIt ≥ 0 for I . After the entry

(t ≥ t∗), the consumer chooses (aIt , a
E
t ) ∈ R2

+, where aEt is the activity level for E. I assume

single-homing: The consumer can choose (aIt , a
E
t ) if and only if min(aIt , a

E
t ) = 0. Single-homing

is natural if platforms offer similar services such as search engines.

discount factor or time horizon.
16Exogenous entry is to simplify exposition. If E can choose to enter in any period t ≥ 2 at a positive entry cost,

then we obtain a similar result where E does not enter in equilibrium.
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I consider two games that differ in the timing of moves. One is competition with long-run com-

mitment: I publicly commits to (γI1 , γ
I
2 , . . . ) at the beginning of t = 1, and E publicly commits to

(γEt∗ , γ
E
t∗+1, . . . ) at the beginning of period t∗. The other is competition with short-run commitment:

In each period, each platform chooses a privacy level, after which the consumer chooses an activity

level. In particular, I and E set privacy levels γIt and γEt simultaneously in each period t ≥ t∗.

As in the baseline model, activity on platform k ∈ {I, E} generates a signal skt = X + εkt

with εkt ∼ N
(

0, 1
akt

+ γkt

)
. Each platform k privately observes skt , that is, there is no information

spillover. All the noise terms (εkt )k,t are independent across (k, t) ∈ {I, E} × N.

The payoff of platform k ∈ {I, E} in period t is σ2
0−σ2

t,k, where σ2
t,k is the conditional variance

ofX given activity levels and privacy levels up to t on platform k. The consumer’s payoff in period

t is given by

u(aIt )− v
(
σ2

0 − σ2
t,I

)
+ 1{t≥t∗} ·

[
u(aEt )− v

(
σ2

0 − σ2
t,E

)]
, (8)

where 1{t≥t∗} is the indicator function that equals 1 or 0 if t ≥ t∗ or t < t∗, respectively. Payoff

(8) implies that even if the consumer switches to E and never uses I from some period on, she

continues to incur a privacy cost based on the information collected by I in the past (see the

discussion in Section 2. Section 7 relaxes this assumption).

To ensure the existence of an equilibrium, I impose an upper bound on the feasible privacy

levels. In practice, the bound might reflect the minimum amount of data that a platform needs to

collect for offering services, or the maximum privacy level that a platform can credibly enforce.

Assumption 1. There is a γ̄ ∈ R+ satisfying a∗ (γ̄, σ2
0) > 0 such that each platform can choose a

privacy level of at most γ̄.

a∗ (γ̄, σ2
0) > 0 implies that if a platform chooses γ̄, then the consumer chooses aIt > 0 or

aEt > 0. This restriction on γ̄ is necessary for a non-trivial equilibrium in which the consumer uses

a platform.

4.1 Equilibrium under Competition

I present an equilibrium in which the consumer never switches to the entrant and the long-run

outcome equals the monopoly outcome.17 If the entry is sufficiently late, then the equilibrium out-
17I do not consider other equilibria, which are likely to exist because there are two patient players in the game.
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come exactly equals the monopoly one. Moreover, there is no equilibrium in which the consumer

permanently switches to the entrant.

Proposition 4. Regardless of the commitment assumption:

1. There is an equilibrium in which aEt = 0 for all t ∈ N, limt→∞ a
I
t = amax, limt→∞ σ

2
I,t = 0,

and limt→∞ γ
I
t = 0.

2. There is a t ≥ 2 such that, if the entry time t∗ is greater than t, then I’s privacy policy

(γIt )t∈N in the above equilibrium coincides with the monopoly strategy.

3. Switching never occurs: There is no equilibrium in which for some t̂ ∈ N, aEt > 0 and

aIt = 0 for all t ≥ t̂.

The intuition is as follows. Before the entry, I chooses privacy levels to induce the consumer to

choose positive activity levels. Suppose that, upon entry, E sets the highest privacy level γ̄. Since

the privacy cost from collected data is sunk, the consumer chooses which platform to use based

on the marginal (or more precisely, incremental) cost. Because the incumbent has collected data,

the consumer faces a lower marginal cost of using I . Thus, if I also chooses γ̄, then the consumer

strictly prefers to use I . However, the equilibrium choice of I may not be γ̄: I chooses a privacy

level to maximize the precision of the signal subject to the constraint that the consumer prefers I .

As time goes by, the constraint is relaxed, because the consumer’s marginal cost of using I goes to

zero. Thus, I can offer a vanishing privacy level over time.

The threat of future entry has no impact on I’s strategy: Before the entry, I chooses the same

privacy levels as monopoly, regardless of commitment assumption. This is because maximizing

the amount of information makes consumer switching least likely.

Point 3 implies that, to poach the consumer, E needs some advantage in terms of the quality

of service or the privacy level. I say that E can successfully enter the market if there exists an

equilibrium in which the consumer switches to E upon entry, i.e., aEt > 0 and aIt = 0 for all

t ≥ t∗.18

18The result considers the entrant’s advantage in terms of service quality. We obtain a similar result by considering
the entrant that can choose a higher maximum privacy level γ̄ + ∆ than the incumbent.
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Proposition 5. Suppose that the gross benefit of E’s service is given by uE(·) := u(·) + ∆.

Regardless of commitment assumption, there is a ∆∗ > 0 such that for any ∆ ≥ ∆∗, E can

successfully enter the market. The minimum ∆∗ satisfying this property is increasing in t∗.

4.2 Antitrust Implication of Propositions 4 and 5

The results imply that data held by incumbents can be a barrier to entry. To see this, suppose

that a platform has collected much data from consumers. Data collection lowers the welfare of

consumers who value their privacy. However, consumers also face lower marginal privacy costs,

because there is less for them to lose on the margin. If consumers regard collected data as sunk (for

the reasons discussed in Section 2), they decide which platform to use based on marginal costs.

Since the incumbent has an advantage in terms of lower marginal costs, switching and market entry

become less likely to occur.

In the model, low marginal costs are associated with high privacy costs. Thus, switching and

market entry are less likely when consumers suffer from a lack of privacy and receive low payoffs

from the incumbent. This welfare implication contrasts with the existing idea of “data as an entry

barrier,” where dominant platforms use data to improve their services. For example, Furman et al.

(2019) states that:

“Data can act as a barrier to entry in digital markets. A data-rich incumbent is able

to cement its position by improving its service and making it more targeted for users,

as well as making more money by better targeting its advertising” (italicized by the

author).

As an application, consider the market for search engines: The incumbent is Google, and the

entrant is a privacy-preserving alternative of Google, such as DuckDuckGo. My results suggest

that, even if DuckDuckGo is as good a search engine as Google, DuckDuckGo may not be able

to poach consumers. If consumers have no privacy to Google, then their marginal privacy cost of

using Google is negligible. Thus, DuckDuckGo may have to offer much better a search engine

than Google without collecting data, which seems unrealistic.

Proposition 4 relies on a strong assumption that the consumer incurs a privacy cost from one

platform even after she migrates to the other platform. At the same time, such a model enables us
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to think what kind of privacy regulation alters this assumption and promotes competition. Indeed,

the next section shows that if the consumer can erase past information, competition is more likely

to occur.

5 Erasing Past Information

I now consider the incentive of the consumer or a platform to erase past information.

5.1 The Right to be Forgotten

Consider the “right to be forgotten,” whereby the consumer can request a platform to erase past in-

formation. Below, I describe the model of competition but a similar extension applies to monopoly.

In each period, the consumer makes two decisions. First, the consumer chooses whether to

erase past information of each platform in the market. Second, the consumer chooses aIt or

(aIt , a
E
t ), depending on whether t is before or after the entry. If she erases information of plat-

form k ∈ {I, E} in period t, then the conditional variance for platform k at the beginning of t

becomes σ2
0 . At the end of the period, the consumer still incurs a privacy cost based on information

generated in period t. The consumer does not incur any cost to erase information, but the results

hold if the cost is not too high.

For example, suppose that the consumer erases information of both platforms in period t and

uses platform E. Then, her payoff is

u(aEt )− v
[
σ2

0 − σ2
1,E(aEt , γ

E
t )
]
, (9)

where σ2
1,E(aEt , γ

E
t ) is the conditional variance for E given one signal based on (aEt , γ

E
t ). Thus,

the privacy cost from E is only based on the signal of period t. Since the consumer has erased

information and does not use I , she does not incur a privacy cost from I .

In contrast, suppose that the consumer has never erased information. If she uses platform E in

period t, then her payoff in period t is

u(aEt )− v
[
σ2

0 − σ2
t,E(aEt ,γ

E
t )
]
− v

[
σ2

0 − σ2
t,I(a

I
t ,γ

I
t )
]
, (10)
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where akt = (ak1, . . . , a
k
t ) and γkt = (γk1 , . . . , γ

k
t ) for each k ∈ {I, E}. Thus, the consumer incurs a

privacy cost from both platforms based on past data collection.

As before, we can consider long-run commitment where a platform commits to the entire pri-

vacy policy, and short-run commitment where a platform sets a privacy level at the beginning

of each period (before the consumer makes any decision). The following result summarizes the

impact of the right to be forgotten.

Proposition 6 (The Right to be Forgotten). If the consumer can costlessly erase past information,

then regardless of the commitment assumption, the following equilibrium exists:

1. Under monopoly, in all periods, the consumer erases information and the platform sets a

privacy level γ∗1 defined in (5).

2. Under competition, the consumer erases information in all periods, and both platforms set

the highest privacy level γ̄ in any period t ≥ t∗ after the entry.

3. Under competition, suppose that the gross benefit of E’s service is given by uE(·) := u(·) +

∆. For any ∆ > 0, E can successfully enter the market.

The right to be forgotten benefits the consumer in three ways. First, it reduces privacy cost.

Second, it incentivizes platforms to choose higher privacy levels: Once the consumer erases in-

formation, she incurs a high marginal privacy cost. Then, a monopoly platform always offers a

period-1 privacy level in any period (Point 1). Under competition, erasing information makes plat-

forms homogeneous and intensifies competition. As a result, platforms offer the highest privacy

level (Point 2). Finally, erasing information eliminates the incumbency advantage and promotes

the entry of a higher quality platform (Point 3).

5.2 Data Retention Policies

This section studies whether a platform has an incentive to voluntarily erase data collected in the

past. This question relates to data retention policies, which have recently been paid attention by

economists and legal scholars (Chiou and Tucker, 2017).
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I consider a game with short-run commitment, where a platform sets a privacy level at the

beginning of each period.19 If there is one platform in the market, then the platform chooses

whether to erase past information and sets a privacy level. Then, the consumer chooses an activity

level. If there are two platforms, then they simultaneously choose whether to erase information.

After observing this, they simultaneously choose privacy levels. Finally, the consumer chooses an

activity level for each platform.

A platform’s erasing information affects the conditional variances and payoffs in the same way

as the consumer erasing information (see the previous subsection). The following result shows that

a platform’s optimal data retention policy is to not erase information at all.

Proposition 7. A platform never erases information:

1. A monopoly platform never erases information in any period in any equilibrium. The equi-

librium outcome equals Proposition 2.

2. Under competition, there is an equilibrium in which platforms never erase information in

any period. Among the equilibria with this property, Proposition 4 holds.

The result illustrates that a platform has different incentives to offer ex ante and ex post privacy

protections. If consumer behavior is exogenous, then a platform has no incentive to raise a privacy

level or erase past information, because it lowers the profit by reducing the amount of information.

However, if consumer behavior is endogenous, a platform may have an incentive to increase a

privacy level (at least in early periods) to reduce the consumer’s marginal cost and increases her

activity level. In contrast, a platform has no incentive to erase information because it increases

the consumer’s marginal privacy cost and decreases her activity level. Thus, we may not expect

competition to encourage platforms to offer the right to be forgotten to consumers.

19The same result holds for other commitment assumptions. For example, if a platform can commit to a privacy
policy and a data retention policy at the outset, then before t = 1, it commits to a privacy policy (γ1, γ2, . . . ) and the
frequency T ∈ N with which the platform deletes information. Here, T means that the platform erases information in
every T periods.
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6 Forward-looking Consumer

The main results under a monopoly platform hold even when the consumer is forward-looking.

Assume that the platform and the consumer have any discount factors δP ∈ (0, 1) and δC ∈ (0, 1),

respectively. The solution concept is pure-strategy subgame perfect equilibrium. The proofs of the

following results are in Appendix F.

6.1 Monopoly with Long-run Commitment Power

First, consider a monopoly platform that can commit to any privacy policy at the outset. The

following result extends Proposition 1.

Proposition 8 (Stationary Policy with a Patient Consumer). Take any privacy policy γ such

that γt = γ for all t ∈ N. Let (āt)t∈N denote the equilibrium strategy in the subgame following γ.

There is a v∗(γ) > 0 such that the following holds:

1. If v < v∗(γ), then āt is increasing in t, lim
t→∞

āt = amax, and lim
t→∞

σ2
t = 0.

2. If v > v∗(γ), then āt = 0 for all t ∈ N.

Moreover, v∗(γ) is increasing and limγ→∞ v
∗(γ) =∞.

The following result extends Proposition 2. The fundamental features of the model are decreas-

ing marginal privacy cost and the platform’s ability to commit to offer privacy, and the myopia

assumption is not necessary.

Proposition 9. For any v ∈ R and (δP , δC) ∈ (0, 1)2, in any equilibrium:

lim
t→∞

a∗t = amax and lim
t→∞

σ2
t = 0. (11)

A technical challenge is that if the platform chooses a non-stationary privacy policy, then the

consumer faces a non-stationary dynamic programming, which is intractable. Thus, I first show

that (11) holds under a stationary privacy policy γS = (γS, γS, . . . ) for a large γS ∈ R. To show

that any equilibrium involves (11), suppose to the contrary that the equilibrium privacy policy γE

involves imperfect learning (i.e., limt→∞ σ
2
t > 0), which implies that the precision of signal st goes
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to zero as t grows large. Suppose that the platform modify γE by replacing (γEτ , γ
E
τ+1, . . . ) with

(γS, γS, . . . ) for a large τ ∈ N. This replacement increases the precisions of the signals after period

τ . It also increases activity levels before period τ , because the consumer chooses higher activity

levels when she anticipates more data collection in the future. The consumer’s response to future

data collection is specific to the forward-looking consumer. It comes from the supermodularity of

her objective in activity levels and the informativeness of signals in different periods.

6.2 Monopoly with Short-run Commitment Power

Suppose now that the platform sets a privacy level γt at the beginning of each period t. We may

think that the equilibrium outcome substantively changes once we jointly consider the patient

consumer and the platform with weaker commitment. For example, the consumer might choose to

not use the platform when it cannot commit to high privacy levels in the future. Contrary to this

intuition, I show that any equilibrium involves privacy loss under a mild modification:

Assumption 2. The following holds.

1. In each period, the consumer chooses at from a finite set A ⊂ R+ such that minA = 0 and

maxA = amax.

2. The platform can choose a privacy level of at most γ̄ that satisfies γ̄ >
(

vσ2
0

(1−δC)u(amax)
− 1
)
σ2

0−
1

u(amax)
.

Point 1 means that there are finitely many activity levels.20 Point 2 means that there is a large

finite upper bound on feasible privacy levels.

Proposition 10. Even if the consumer is patient and the platform has short-run commitment power,

the consumer eventually loses privacy: For any v ∈ R and (δP , δC) ∈ (0, 1)2, in any equilibrium,

lim
t→∞

σ2
t = 0 and lim

t→∞
a∗t = amax.

20To prove σ2
t → 0 in Proposition 10, we can replace Point 1 with a weaker assumption that A is a compact set

that has the smallest positive activity level, i.e., inf(A \ {0}) > 0. I adopt Point 1 to simplify exposition.

24



7 Extensions

This section shows that the main insight holds in a more general environment. Also, I examine

how the equilibrium dynamics interact with the platform’s incentive to invest in quality. Unless

otherwise noted, I consider a monopoly platform with long-run commitment power and a myopic

consumer.

7.1 Consumers with Heterogeneous v

Proposition 2 holds when consumers have heterogeneous v’s. In other words, the main insight

does not depend on the platform knowing v at the outset. To see this, extend the model as follows:

There is a unit mass of consumers. Each consumer i ∈ [0, 1] has vi, which is distributed according

to some distribution with a finite support V ⊂ R+. Let αv ∈ [0, 1] denote the mass of consumers

who have v ∈ V . The platform knows V and (αv)v∈V .

The game is a natural extension of the baseline model. Before t = 1, the monopoly platform

chooses a privacy policy (γt)t∈N, which is common across all consumers. Then, each consumer i

myopically chooses activity levels (at(i))t∈N. The types and signals are independent across con-

sumers. Thus, the platform learns about i’s type only based on her past activity levels and privacy

levels.

For each i ∈ [0, 1], let σ2
t (i) denote the conditional variance for consumer i at the end of period

t. Then, i’s payoff is u(at(i))− vi[σ2
0 − σ2

t (i)], and the platform’s payoff is
∫
i∈[0,1]

σ2
0 − σ2

t (i)di. If

(almost) all consumers who have the same v choose the same activity level, then we can write the

platform’s profit as
∑

v∈V αv [σ2
0 − σ2

t (v)], where σ2
t (v) is the conditional variance of consumers

with v.

The platform faces a new trade-off: A high privacy level encourages consumers with high v

to choose positive activity levels. However, the platform obtains less information from consumers

with low v, who could choose high activity levels even without privacy protection.21

However, there is no trade-off for the platform in the long-run: All consumers eventually lose

privacy and choose the highest activity levels (see Appendix H.1 for the proof).

21A similar trade-off arises in Lefouili and Toh (2019).
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Proposition 11. Let (a∗t (v), σ2
t (v), γ∗t )t∈N,v∈V denote the outcome of any equilibrium. Then,

∀v ∈ V, lim
t→∞

(a∗t (v), σ2
t (v)) = (amax, 0) and lim

t→∞
γ∗t = 0. (12)

To see the intuition, suppose that v is either L = 0 or H > 0, and the platform sets γt = 0

in early stages to obtain information only from L-consumers. During this period, only σ2
t (L)

decreases over time. However, once σ2
t (L) gets close to zero, the platform finds it more profitable

to increase a privacy level to encourage H-consumers to use the platform. Thus, the platform

eventually obtains information from all consumers.

7.2 Endogenous Quality of Service

So far, the benefit u(·) from the platform’s service has been exogenous. Suppose now that, before

t = 1, the platform chooses a quality q ≥ 0. Then, in each period, the consumer receives a gross

benefit of uq(a) = qa− 1
2
a2, and the platform receives a payoff of σ2

0 − σ2
t − c(q) for some strictly

increasing c(·). The platform chooses q once, but incurs c(q) in every period.

Proposition 12. A patient platform does not invest in quality: For any δP ∈ (0, 1), let q(δP ) denote

the quality in an (arbitrarily chosen) equilibrium. Then, limδP→1 q(δP ) = 0. Thus, regardless of

the consumer’s discount factor, as δP → 1, her ex ante sum of discounted payoffs converges to

zero, and her long-run equilibrium payoff converges to −vσ2
0 < 0.

Proof. Given (δP , q), Let Π(δP , q) denote the platform’s ex ante sum of discounted profits. For any

q > 0, the platform’s per-period payoff is at most σ2
0 − c(q). Thus, (1− δP )Π(δP , q) ≤ σ2

0 − c(q).

Suppose to the contrary that there is a sequence δn → 1 such that for some q′ > 0, q(δn) ≥

q′ for infinitely many n’s (for some selection of equilibria). Without loss of generality, assume

(1 − δn)Π(δn, q(δn)) ∈ [0, σ2
0] has a limit. Then, limn→∞(1 − δn)Π(δn, q(δn)) ≤ σ2

0 − c(q′) <

σ2
0 − c(q′/2). Proposition 9 implies that there is a γ under which (a∗t , σ

2
t ) → (amax, 0) given

quality q′/2. If the platform chooses q′/2 and γ, then as δP → 1, its average payoff converges

to σ2
0 − c(q′/2). Thus, the platform with a large δn strictly prefers q′/2 to q(δn), which is a

contradiction. Thus, limδP→1 uq(δP )(amax)− vσ2
0 = −vσ2

0 . Also, as the consumer’s ex ante payoff

is nonnegative but lower than
uq(δP )(amax)

1−δC
, it converges to 0 as δP → 1.

26



7.3 General Privacy Cost Function

This subsection generalizes consumer preferences in two ways. First, I relax the assumption that

privacy cost is sunk. Second, I relax the assumption that privacy cost is linear in σ2
t . Appendix H.2

contains the proof.

7.3.1 Relaxing “Privacy Cost is Sunk”

The baseline model assumes that the consumer incurs a privacy cost of −v(σ2
0 − σ2

t−1) even if she

chooses at = 0. Suppose now that the consumer incurs only a fraction α ∈ [0, 1) of the privacy

cost when at = 0. If at > 0, her payoff is u(at) − v (σ2
0 − σ2

t ). If at = 0, it is −αv
(
σ2

0 − σ2
t−1

)
.

The main results under monopoly and competition continue to hold for α close to 1.

Proposition 13. Take any v ∈ R. Let (a∗t , γ
∗
t , σ

2
t )t∈N denote the outcome of any equilibrium. There

is an α∗ < 1 such that for any α ≥ α∗, lim
t→∞

a∗t = amax, lim
t→∞

γ∗t = 0, and lim
t→∞

σ2
t = 0.

Proposition 14. There is an α∗ < 1 such that for any α ≥ α∗, the result under competition

(Proposition 4) holds.

7.3.2 Relaxing Linearity

Suppose that the consumer’s per period payoff is u(at) − C (σ2
t ). Assume C(·) : R+ → R is

continuously differentiable. In particular, the cost and the marginal cost at no privacy (i.e., C(0)

and C ′(0)) are finite. C(·) can be non-monotone: For example, C(·) can be first decreasing and

then increasing, which means that the consumer prefers some (but not too much) data collection.

The following result shows that the long-run outcome remains the same.

Proposition 15. In any equilibrium, lim
t→∞

a∗t = amax and lim
t→∞

σ2
t = 0.

7.4 Time-varying Type of the Consumer

The baseline model assumes that the consumer’s type X is constant over time. However, we can

conceptually extend the model so that her type is some stochastic process (Xt)t∈N. One possibility,

which I adopt for a numerical analysis, is as follows: Xt+1 = φXt + ζt with φ ∈ [0, 1], X0 ∼

N (0, σ2
0), and ζt

iid∼ N (0, (1−φ2)σ2
0). The variance of each ζt is normalized so that V ar(Xt) = σ2

0
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a2, v = 10, σ2

0 = 1, φ ∈ {0.1, 0.5, 0.98}, and γt ≡ 4.

for all t ∈ N. As in the baseline model, given an activity level at and a privacy level γt in period

t, the platform observes a signal st = Xt + εt with εt ∼ N
(

0, 1
at

+ γt

)
. The conditional variance

evolves according to σ2
t = 1

1

φ2σ2
t−1+(1−φ2)σ2

0
+ 1

1
at

+γt

.

A natural question is how the equilibrium converges to the steady state. However, such an

analysis is difficult partly because the consumer’s objective is neither concave nor convex in at.

Since we cannot use the first-order condition to solve the consumer’s problem, we are not able to

obtain a simple set of equations to characterize the steady state.

Instead, I present a numerical analysis to study how the equilibrium responds to the persistence

of the consumer’s type. Intuitively, if the type is less persistent (i.e., φ is small), a larger amount

of new information arrives in each period. Then, she faces a higher marginal cost and chooses a

lower activity level. Figure 2 confirms this intuition: Given a stationary privacy level, the optimal

activity levels converge to the steady states, which seem to increase in φ.

Figure 3 presents equilibria taking into account the platform’s optimization. First, the numeri-

cal analysis suggests that the main insight of this paper is not specific to the baseline specification

φ = 1. Namely, the platform offers relatively a high privacy level in early periods but later reduces

it (Figure 3(a)). While Figure 3 fixes v, a similar numerical exercise shows that the platform is able
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to obtain non-trivial amount of information in the steady state even if v is larger.22 Second, the

platform offers a higher privacy level when the consumer’s type is less persistent. This observation

is consistent with the intuition that the consumer faces a higher privacy cost when her type is less

persistent. Finally, the equilibrium activity level is not necessarily decreasing in φ. Indeed, the

steady state activity level at φ = 0.98 is higher than the one at φ = 0.5 but lower than the one

at φ = 0.1. Thus, the activity level is no longer monotone in φ once we consider the platform’s

optimal privacy policy.

7.5 General Payoffs for the Platform

All the results of this paper continue to hold if the platform’s final payoff from any sequence of

conditional variances is Π((σ2
t )t∈N), where Π : R∞+ → R is bounded and coordinate-wise strictly

decreasing. This generalization does not affect the analysis because, in the equilibrium under

monopoly or competition, any deviation by a platform weakly increases σ2
t for all t ∈ N.

One natural specification of Π(·) is as follows: Suppose that the platform sells information to a

sequence of short-lived data buyers. Any information sold in period t is freely replicable later and

22For example, if φ = 0.5 and v = 200, then in the steady state, the platform offers γt ≈ 90 and the consumer
chooses at = amax = 2.
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thus has a price of zero in any period s ≥ t+ 1. Then, the platform’s payoff in period t equals the

value of information newly generated in period t. Thus, the ex ante payoff is
∑∞

t=1 δ
t−1
P (σ2

t−1−σ2
t ).

This objective is strictly decreasing in each σ2
t , because the coefficient of each σ2

t is−δt−1
P +δtP < 0.

8 Conclusion

This paper studies a dynamic model of consumer privacy and platform data collection. The fun-

damental feature of the model is that a consumer faces a lower marginal loss of giving up privacy

as a platform collects more data. The paper explores dynamic implications of this idea. First, a

monopoly platform is able to collect much information over time by committing to underuse data

in the early stages. In equilibrium, the consumer eventually loses privacy but keeps choosing a

high level of activity. The result is robust to extensions such as consumer heterogeneity and a plat-

form’s weaker commitment power. Second, decreasing marginal privacy cost makes competition

unhelpful, because a consumer is more likely to stick to a platform to which she has less privacy.

The results rely on “data persistence,” where data generated today can adversely affect consumers

in the future. I show how regulating data collection could perversely lower the long-run privacy

and consumer welfare, and how a regulation such as the right to be forgotten promotes competition

and benefits consumers.
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Appendix

A Properties of the Consumer’s Best Response: Proof of Lemma 2

Proof. Define U(a, γ, σ2) := u(a) − v
(
σ2

0 − 1
1
σ2 + 1

1
a+γ

)
. Lemma 1 implies that ∂U

∂a
is increasing

in γ and decreasing in σ2. The standard argument of monotone comparative statics implies that

a∗(γ, σ2) is increasing in γ and decreasing in σ2 (e.g., Milgrom et al. 1994).

Suppose to the contrary that limσ2→0 a
∗(γ, σ2) = amax fails. As a∗(γ, σ2) ≤ amax for all

(γ, σ2), there are ε > 0 and (σ2
n)n∈N such that limn→∞ σ

2
n = 0, a∗(γ, σ2

n) ≤ amax−ε for all n ∈ N,

and limn→∞ a
∗(γ, σ2

n) = amax − ε. Suppose that the consumer chooses amax instead of a < amax.

Then, the payoff difference is

∆(a, σ2) := u(amax)− u(a)− v

σ2
0 −

1
1

σ2
+

1
1

amax
+ γ

+ v

σ2
0 −

1
1

σ2
+

1
1
a

+ γ

 . (13)

Note that limn→∞∆(a∗(γ, σ2
n), σ2

n) = u(amax)−u(amax−ε) > 0. This implies that ∆(a∗(γ, σ2
n), σ2

n) >

0 for a large n. Thus, for a large n, the consumer strictly prefers amax to a∗(γ, σ2
n), which is a con-

tradiction. A similar argument implies that limγ̂→∞ a
∗(γ̂, σ2) = amax.

B The Long-run Outcome Under a Stationary Privacy Policy:

Proof of Proposition 1

Proof. To clarify that the optimal activity level depends on v, I write a∗(γ, σ2) as a∗(v, γ, σ2),

which is decreasing in v. Define v∗(γ) as follows:

v∗(γ) = sup
{
v ∈ R : a∗

(
v, γ, σ2

0

)
> 0
}
. (14)
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Note that ∂U
∂a

= u′(a)− v 1(
1

σ2
0

(1+γa)+a

)2 . This implies that

∂U

∂a

∣∣∣
a=0

= u′(0)− v · (σ2
0)2,

∂U

∂a

∣∣∣
a=a′
≤ u′(0)− v · 1(

1
σ2

0
(1 + γamax) + amax

)2 ,∀a
′ ∈ [0, amax].

The second inequality holds because u(·) and the privacy cost function are increasing and concave.

For a sufficiently small v, the right hand side of the first equality is positive. Thus, v∗(γ) is well-

defined and positive. For a sufficiently large v, the right hand side of the second inequality is

negative. Thus, v∗(γ) is finite.

Suppose v < v∗(γ). By the construction of v∗(γ), a∗(v, γ, σ2
0) > 0. σ2

t decreases in t for any

sequence of activity levels. Thus, if γt = γ for any t ∈ N, then a∗(v, γ, σ2
t ) is increasing in t and

greater than a∗1 > 0 for all t. This implies that limt→∞ σ
2
t = 0, because

0 ≤ σ2
t ≤

1
1
σ2

0
+ t(

1
a∗1

+γ

) → 0 as t→∞.

Lemma 2 implies limt→∞ a
∗
t → amax. For v > v∗(γ), note that a∗(v, γ, σ2

0) = 0, which implies

that a∗t = 0 for all t. v∗(γ) is increasing in γ, because a∗ (v, γ, σ2
0) is increasing in γ. Finally,

limγ→∞ a
∗(γ, σ2) = amax in Lemma 1 implies limγ→∞ v

∗(γ) =∞.

C Properties of Equilibrium: Proof of Proposition 2

Proof. The proof relies on Proposition 3, which I prove in the main text. Let (a∗t , σ̂
2
t )t∈N denote the

equilibrium activity levels and conditional variances. First, I prove limt→∞ σ̂
2
t = 0. Proposition

1 implies that there is a stationary privacy policy γt ≡ γ such that limt→∞ σ
2
t = 0. Proposition 3

implies that σ̂2
t ≤ σ2

t for all t ∈ N, which implies limt→∞ σ̂
2
t = 0.

To show limt→∞ a
∗
t = amax, suppose to the contrary that there is an ε > 0 such that a∗t ≤

amax − ε for infinitely many t’s. Without loss of generality, suppose a∗t ≤ amax − ε for all t.

Following the proof of Lemma 2, we can conclude that, for a large t, the consumer strictly prefers

amax to a∗t . Indeed, if the consumer chooses amax instead of a∗t , u(·) increases by at least u(amax)−
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u(amax − ε) > 0 whereas the increment of privacy cost goes to zero. This is a contradiction.

To prove limt→∞ γ
∗
t = 0, suppose to the contrary that there is a γ > 0 such that γ∗t ≥ γ for

infinitely many t’s. To simplify exposition, suppose γ∗t ≥ γ for all t ∈ N. Take any ε ∈ (0, γ).

Then, since limt→∞ a
∗
t = amax > 0, for a sufficiently large t, the minimized value in (5) is

weakly greater than 1
amax
− ε + γ. To show a contradiction, let T denote the first period such that

a∗(0, σ̂2
T−1) > 0. Then, a∗(0, σ̂2

t−1) > 0 for any t ≥ T . If the platform chooses γt = 0 instead of γ∗t

in period t ≥ T , then the minimand in (5) equals 1
a∗(0,σ̂2

t )
, which converges to 1

amax
< 1

amax
− ε+ γ

for a sufficiently large t. This implies that for a sufficiently large t, the platform can strictly increase

its payoff in period t by setting γt = 0, which is a contradiction.

To show the final part, I write γ∗t (v) to clarify the dependence of the equilibrium privacy level

on v. Suppose to the contrary that there is a T such that, for any v, there is some v ≥ v such that

γ∗t (v) = 0 for some t ≤ T . Then, we can find vn → ∞ and t∗ ≤ T such that γ∗t∗(vn) = 0 for

all n. However, for a sufficiently large vn, a∗t∗ = 0 if γ∗t∗(vn) = 0. This follows from the proof

of Proposition 1, where I show that the consumer with a sufficiently large v chooses a∗1 = 0 for a

fixed γ1. This contradicts the optimality of γ∗ because if the platform sets a sufficiently large γt∗ ,

then the consumer chooses a positive activity level and the minimand in (5) becomes finite.

D Equilibrium under Competition: Proofs for Section 4

D.1 Proof of Proposition 4

Proof. For each k ∈ {I, E}, I use −k to mean E or I if k = I or k = E, respectively. Suppose

that, at the beginning of period t ≥ t∗, the conditional variance for platform k is σ2
t−1,k. Let γkt

denote the privacy level of platform k in period t. The consumer weakly prefers to use platform k

(i.e. a−kt = 0 maximizes her period-t payoff) if

arg max
a≥0

u(a)− v[σ2
0 − σ2

t,k(γ
k
t , a|σ2

t−1,k)]− v[σ2
0 − σ2

t−1,−k]

≥ arg max
a≥0

u(a)− v[σ2
0 − σ2

t,−k(γ
−k
t , a|σ2

t−1,−k)]− v[σ2
0 − σ2

t−1,k],

where σ2
t,k(γ, a|σ2

t−1,k) is the conditional variance at the end of period twhen platform k chooses γ,

the consumer chooses a, and the conditional variance from the previous period is σ2
t−1,k. Arranging
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this inequality, we obtain

arg max
a≥0

u(a)−v[σ2
t−1,k−σ2

t,k(γ
k
t , a|σ2

t−1,k)] ≥ arg max
a≥0

u(a)−v[σ2
t−1,−k−σ2

t,−k(γ
−k
t , a|σ2

t−1,−k)].

(15)

The above inequality implies that the consumer prefers to use k if and only if the gross benefit

from the service net of the incremental privacy cost is greater for k than −k.

First, I consider competition with short-run commitment. Consider the following strategy pro-

file. For each period t < t∗, I chooses a monopoly privacy level γ∗t . Take any period t ≥ t∗. Let

k∗ ∈ arg mink=I,E σ
2
t−1,k denote the platform that has the lower conditional variance (if k∗ is not

unique, then set k∗ = I). Then, platform −k∗ chooses the highest privacy level γ̄. Platform k∗

chooses a privacy level γk∗t that solves

min
γ∈[0,γ̄]

1

a∗(γ, σ2
t−1,k∗)

+ γ

s.t. arg max
a≥0

u(a)− v[σ2
t−1,k∗ − σ2

t,k∗(γ, a|σ2
t−1,k∗)] (16)

≥ arg max
a≥0

u(a)− v[σ2
t−1,−k∗ − σ2

t,−k∗(γ̄, a|σ2
t−1,−k∗)].

In each period, the consumer myopically chooses aIt (if t < t∗) or (aIt , a
E
t ) (if t ≥ t∗) to maximize

her per-period payoff. If indifferent, then the consumer uses the platform for which she chose a

positive activity level in the most recent period. (If she chose zero activity levels up to period t−1,

then she sets akt = 0 for one of k ∈ {I, E} with equal probability, and chooses a−kt to maximize

her period-t payoff.)

I show that the above strategy profile is an equilibrium. First, the consumer’s behavior is

optimal by construction. Second, I verify that platforms have no profitable deviation. Without loss

of generality, consider a node in period t in which I = k∗ and E = −k∗. The strategy of E is

optimal: By construction, even if E chooses γ̄ in all periods s ≥ t, the consumer uses I in any

future periods as long as I and the consumer follow the above strategy.

Suppose now that I chooses a privacy level such that the consumer chooses E in period t. If

σ2
t,E ≤ σ2

t,I , then the consumer uses E in any period s ≥ t + 1. In this case, I’s deviation is not

profitable. Otherwise, σ2
t,E > σ2

t,I hold. Note that I obtains a lower payoff in period t, because it

is not maximizing the informativeness of the signal. Moreover, at any future period s, I faces an
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optimization problem

min
γ

1

a∗(γ, σ2
s−1,I)

+ γ

s.t. arg max
a≥0

u(a)− v[σ2
s−1,I − σ2

s,I(γ, a|σ2
s−1,I)] (17)

≥ arg max
a≥0

u(a)− v[σ2
s−1,E − σ2

s,E(γ̄, a|σ2
s−1,E)].

After deviation, I faces a strictly lower σ2
s−1,E − σ2

s,E(γ̄, a|σ2
s−1,E) > 0 because the consumer

generated information on E in period t. This means that the set of γ that satisfies the constraint is

smaller. Thus, the minimized value in (17) becomes greater for any period s ≥ t+1 after deviation.

This implies that I’s payoff is weakly lower for any period s ≥ t after the deviation. A similar

argument implies that it is not profitable for I to deviate from a monopoly strategy before entry.

This is because the deviation lowers I’s payoff before and after entry. In particular, the deviation

shrinks the set of γ’s satisfying the constraint in (17) by increasing σ2
s−1,I − σ2

s,I(γ, a|σ2
s−1,I).

On the equilibrium path, aEt = 0 for all t ∈ N. limt→∞ σ
2
I,t = 0 holds because it holds even if I

adopts γt = γ̄ for all t, and I chooses each γIt to achieve even lower conditional variances. Given

this result, limt→∞ a
I
t = a∗ follows the same proof as monopoly.

Suppose that γIt does not converge to 0. Then, there is a convergent subsequence γIt(n) such

that limn→∞ γ
I
t(n) = γ′ > 0. For a sufficiently large n, both γ = 0 and γ = γIt(n) satisfy the

constraint in (17), because σ2
s−1,E − σ2

s,E(γ̄, a|σ2
s−1,E) = σ2

0 − σ2
1,E(γ̄, a∗(γ̄, σ2

0)|σ2
0) > 0, but

lims→∞ σ
2
s−1,I − σ2

s,I(0, a
∗(0, σ2

s−1,I)|σ2
s−1,I) ≤ lims→∞ σ

2
s−1,I = 0. As n → ∞, the value of the

objective converges to 1
amax

and 1
amax

+ γ′ for γ = 0 and γ = γ′, respectively. Thus, for a large

n, γ = 0 achieves a strictly lower value in (17) than γ = γ′. This is a contradiction and thus

limt→∞ γ
I
t → 0 in the equilibrium.

For a sufficiently large t∗, σ2
t∗−1,I ≤ σ2

0 − σ2
t∗,E(γ̄, a∗(σ2

0, γ̄)|σ2
0). Then, for any period t ≥ t∗,

the constraint (17) holds for any γ ≤ γ̄. This implies that I’s problem is equal to the monopolist’s

problem after the entry. Combined with the above result, I’s choice equals the monopolist’s.

Finally, there is no equilibrium in which aEt > 0 and aIt = 0 for all t ≥ t∗. This is because I

can then choose γ̄ for all periods. Given this, the consumer strictly prefers to use I for any period

t ≥ t∗ ≥ 2, because the consumer has generated information on I in periods t < t∗, which leads
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to a strictly lower marginal privacy cost.

A similar proof applies to competition with long-run commitment. In particular, I consider an

equilibrium in which E commits to γEt = γ̄ ∀t ≥ t∗, and I commits to monopoly privacy levels

before t∗ and sets privacy levels by recursively solving (17) after t∗.

D.2 Successful Entry: Proof of Proposition 5

Proof. Consider the following strategy profile: In any period t ≤ t∗, I chooses a monopoly strat-

egy. In any period t ≥ t∗, I chooses γ̄, whereas E solves

min
γ∈[0,γ̄]

1

a∗(γ, σ2
t−1,E)

+ γ

s.t. arg max
a≥0

u(a) + ∆− v[σ2
t−1,E − σ2

t,E(γ, a|σ2
t−1,E)] (18)

≥ arg max
a≥0

u(a)− v[σ2
t−1,I − σ2

t,I(γ̄, a|σ2
t−1,I)].

Let ∆∗ denote the lowest ∆ such that the set of γ’s that satisfy (18) is nonempty given t = t∗,

σ2
t∗−1,E = σ2

0 , and the monopoly outcome σ2
t−1,I . ∆∗ is well-defined because the set of all γ’s

satisfying the constraint is non-empty for a large ∆, and the set is upper hemicontinuous in ∆.

The rest of the strategy profile is specified analogously to Proposition 4. The same argument

as Proposition 4 confirms that this is an equilibrium. ∆∗ is increasing in t∗, because a larger t∗

decreases σ2
t∗−1,I − σ2

t∗,I(γ̄, a|σ2
t−1,I).

Finally, suppose ∆ < ∆∗ but there is an equilibrium in which the consumer only uses E in any

period t ≥ t∗. If I adopts a monopoly strategy for any t < t∗ and chooses γIt = γ̄ in period t∗, then

the consumer strictly prefers to use I in t∗. This weakly increases I’s payoff for any period t < t∗

and strictly increases I’s payoff in period t∗. This is a contradiction.

E Erasing Past Information: Omitted Proofs from Section 5

E.1 The Right to be Forgotten: Proof of Proposition 6

Proof. Consider monopoly with long-run commitment. Since the consumer’s action does not af-

fect a privacy policy, it is optimal for the consumer to erase information in all periods. Anticipating
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this, the platform maximizes the amount of information generated in each period by solving the

problem (5) with t = 1. If the platform has short-run commitment power, then the platform sets

γt to maximize the amount of information in each period. Because 1
a∗(σ2,γ)

+ γ is increasing in

σ2, it is optimal for the consumer to erase information, which leads to a weakly lower amount of

information generated. In either case, the platform’s problem leads to γt = γ∗1 for all t.

For competition, consider the following strategy profile: Before entry, the consumer erases

information in all periods, and chooses the activity level according to a∗(·, ·). After entry, the

consumer erases information in all periods, and chooses the platform that offers γt = γ̄ for all

t ≥ t∗ if there is such a platform (for a node in which both platform have deviated, I assign any

equilibrium of that subgame). On the path of play, I sets γIt = γ∗1 for all t < t∗ and γIt = γ̄ for

all t ≥ t∗. E sets γEt = γ̄ for all t ≥ t∗ upon entry. I can pick any equilibrium in any subgame in

which the consumer deviates and chooses to not erase information, because the consumer is worse

off relative to no deviation.

Finally, for any ∆ > 0, we can construct an equilibrium in which (i) the consumer erases in

formation in all periods and sets aIt = 0 for any t ≥ t∗, (ii) I sets γ̄ in any period t ≥ t∗, and (iii)

E sets the lowest γEt such that the consumer is indifferent between I and E and therefore chooses

E. This is an equilibrium in which aEt > 0 and aIt = 0 for all t ≥ t∗.

E.2 Data Retention Policies: Proof of Proposition 7

Proof. A monopolists’ problem is to solve (5) by choosing a privacy level and whether to erase

information. Whenever σ2
t−1 < σ2

0 , erasing information strictly increases the conditional variance,

increases the consumer’s marginal cost, and shifts a∗(·, σ2) downward. Thus, erasing information

strictly lowers the platform’s payoff.

In the model of competition, consider the strategy profile in which platforms never erase in-

formation on the path of play, and all players behave in the same way as the strategy profile con-

structed for Proposition 4. The action of each player straightforwardly extends to nodes in which

a platform has deleted information, because the relevant state variable in that strategy profile is

(σ2
I,t−1, σ

2
E,t−1). If a platform erases information, it lowers the payoff and increases the consumer’s

cost of using the platform. Thus, it is optimal for each platform to not erase information.
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F Forward-looking Consumer and Platform with Long-run Commitment:

Proof of Proposition 9

This appendix consists of three steps. First, I prove the existence of an equilibrium in which the

consumer breaks ties and chooses the “greatest” sequence of activity levels. Second, I prove useful

properties of the consumer’s value function in her dynamic optimization. Finally, I use these results

to prove Propositions 8 and 9.

I prepare notations. Let A := [0, amax]
N denote the set of all sequences of activity levels

between 0 and amax. It is without loss of generality to exclude an activity level strictly above amax.

Let a denote a generic element of A, with the t-th coordinate denoted by at. Let Γ denote the set

of all sequences of non-negative real numbers. Let γ denote a generic element of Γ, with the t-th

coordinate denoted by γt. I consider product topology for A and Γ.

F.1 Existence of an Equilibrium

Take any privacy policy γ ∈ Γ. The consumer’s problem is

max
a∈A

∞∑
t=1

δt−1
C

u(at)− v ·

σ2
0 −

1
1
σ2

0
+
∑t

s=1
1

1
as

+γs

 . (19)

For any γ ∈ Γ, let A∗(γ) ⊂ A denote the set of all maximizers in (19).

Lemma 3. A∗(γ) is non-empty, compact, and upper hemicontinuous in γ.

Proof. First, A is compact with respect to product topology. Second, the objective function is

continuous: To see this, take any sequence of the consumer’s choices (an)∞n=1 such that an → a∗.

This implies that, for each t ∈ N, limn→∞ a
n
t → a∗t . The consumer’s period-t payoff Ut(a,γ) :=

u(at)−v ·

(
σ2

0 − 1
1

σ2
0

+
∑t
s=1

1
1
as

+γs

)
is bounded from above and below by u(a∗) > 0 and−vσ2

0 < 0,

respectively. Define B := max(u(a∗), vσ2
0) > 0. Take any ε > 0, and let T ∗ satisfy δT

∗
C

1−δC
B < ε

4
.

Take a sufficiently large n so that, for each t ≤ T ∗, δt−1
C |Ut(an,γ) − Ut(a

∗,γ)| < ε
2T ∗

. These

inequalities imply that ∣∣∣∣∣
∞∑
t=1

δt−1
C Ut(a

n,γ)−
∞∑
t=1

δt−1
C Ut(a

∗,γ)

∣∣∣∣∣ < ε.
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Thus, equation (19) is continuous in a. For each privacy policy γ, let A∗(γ) ⊂ A denote the set

of all maximizers. Berge maximum theorem implies thatA∗(γ) is non-empty, compact, and upper

hemicontinuous.

Next, I prove some properties of the consumer’s objective U(a,γ) :=
∑∞

t=1 δ
t−1
C Ut(a,γ).

Abusing notation, for any a,a′ ∈ A, write a ≥ a′ if and only if at ≥ a′t for all t ∈ N. ≥ is a

partial order on A, and (A,≥) is a lattice.

Lemma 4. For any γ, U(a,γ) is supermodular in a.

Proof. Take any γ. Below, I omit γ and write U(·,γ) as U(·). Take any a, b ∈ A. For each

n ∈ N, define (a ∨ b)n as

(a ∨ b)n =

max(at, bt) if t ≤ n,

at if t > n.

(20)

Similarly, define (a ∧ b)n as

(a ∧ b)n =

min(at, bt) if t ≤ n,

at if t > n.

(21)

Also, define bn as

bn =

bt if t ≤ n,

at if t > n.

(22)

In product topology, (a ∨ b)n → a ∨ b, (a ∧ b)n → a ∧ b, and bn → b as n → ∞. For each

n ∈ N, U(a) is supermodular in the first n activity levels, (a1, . . . , an) ∈ Rn
+. Thus, U((a ∨

b)n) + U((a ∧ b)n) ≥ U(a) + U(bn). Since U(·) is continuous, we can take n → ∞ and obtain

U(a ∨ b)) + U(a ∧ b) ≥ U(a) + U(b).

Lemma 5. There is an ā ∈ A∗(γ) such that, for any a ∈ A∗(γ), ā ≥ a.
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Proof. First, Corollary 2 of Milgrom et al. (1994) implies that A∗(γ) is a sublattice of A. Since

A∗(γ) is compact, for each t ∈ N, the projection of A∗(γ) on the t-th coordinate, i.e.,

A∗t (γ) :=
{
at ∈ [0, a∗] : ∃a−t = (as)s∈N\{t} ∈ A∗(γ) s.t. (at,a−t) ∈ A∗(γ)

}
, (23)

is compact (here, (at,a−t) is a sequence of activity levels such that the consumer takes at in period

t and acts according to a−t in other periods). For each k ∈ N, let ak denote an optimal policy such

that ak = maxA∗k(γ). Define āk := a1 ∨ · · · ∨ ak. Since A∗(γ) is sublattice, for any k ∈ N, āk

maximizes (19). Also, āk → ā, where āt = maxA∗k(γ) for any k ∈ N. Since A∗(γ) is compact,

ā ∈ A∗(γ). By construction, for any a ∈ A∗(γ), ā ≥ a.

For each γ ∈ Γ, let ā(γ) := (āt(γ))t∈N denote the “greatest” strategy of the consumer defined

in Lemma 5.

Lemma 6. For each t ∈ N, āt(γ) is upper semicontinuous in γ.

Proof. By Lemma 3,A∗(γ) is upper hemicontinuous. Thus, the setA∗t (γ) of all activity levels for

period t is upper hemicontinuous in γ. Thus, it is enough to show that for any upper hemicontinu-

ous and compact-valued correspondence φ : X � R, f(x) := maxφ(x) is upper semicontinuous.

To show this, take any xn → x. For each n, define yn = f(xn). Because there is a subsequence

yn(k) of yn that converges to lim sup yn, it holds that lim sup yn = lim yn(k) = lim f(xn(k)) ≤

f(limxn(k)) = f(x). The inequality holds because φ has a closed graph. Connecting the left and

right sides, we establish that f(·) is upper semicontinuous.

Lemma 7. There exists an equilibrium.

Proof. The platform’s objective is

∞∑
t=1

δt−1
P

σ2
0 −

1
1
σ2

0
+
∑t

s=1
1

1
ās(γ)

+γs

 . (24)
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To show it is upper semicontinuous, take γn → γ. Then,

lim sup
n→∞

∞∑
t=1

δt−1
P

σ2
0 −

1
1
σ2

0
+
∑t

s=1
1

1
ās(γn)

+γns


= lim

k→∞
sup
n≥k

∞∑
t=1

δt−1
P

σ2
0 −

1
1
σ2

0
+
∑t

s=1
1

1
ās(γn)

+γns


≤ lim

k→∞

∞∑
t=1

δt−1
P

σ2
0 −

1
1
σ2

0
+
∑t

s=1 supn≥k
1

1
ās(γn)

+γns


=
∞∑
t=1

δt−1
P

σ2
0 −

1
1
σ2

0
+
∑t

s=1 limk→∞ supn≥k
1

1
ās(γn)

+γns


=
∞∑
t=1

δt−1
P

σ2
0 −

1
1
σ2

0
+
∑t

s=1
1

lim infn→∞
1

ās(γn)
+γns


≤
∞∑
t=1

δt−1
P

σ2
0 −

1
1
σ2

0
+
∑t

s=1
1

1
lim supn→∞ ās(γn)

+limk→∞ infn≥k γns


≤
∞∑
t=1

δt−1
P

σ2
0 −

1
1
σ2

0
+
∑t

s=1
1

1
ās(γ)

+γ


The second equality comes from the dominated convergence theorem, and the last inequality uses

the upper semicontinuity of ās(γ). Thus, given the consumer’s optimal behavior, the platform’s

objective is upper semicontinuous. Since Γ is compact, there is a privacy policy γ∗ that maximizes

the platform’s objective. (γ∗, ā(·)) is an equilibrium.

F.2 Properties of Consumer Value Function

For each privacy policy γ ∈ Γ, define

Vγ(ρ) :=
∞∑
t=1

δt−1
C

u(āt(γ))− v ·

σ2
0 −

1

ρ+
∑t

s=1
1

1
ās(γ)

+γs

 . (25)

Vγ(ρ) is the consumer’s maximum value of the objective starting from the conditional variance

σ2 = 1
ρ
.
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Lemma 8. For any γ ∈ Γ, Vγ(·) is decreasing and convex. For any ρ > 0 and ∆ > 0,

limρ→∞ Vγ(ρ)− Vγ(ρ+ ∆) = 0.

Proof. Fix any privacy policy γ. Hereafter, I omit γ from subscripts (thus, the consumer value

function is V (·)). Consider the “T -period problem, ” in which the consumer’s payoff in any period

s ≥ T +1 is exogenously set to zero. For any t ≤ T , let V T
t (ρ) denote the consumer’s continuation

value in the T -period problem starting from period t given 1
σ2
t−1

= ρ:

V T
t (ρ) = max

at,...,aT

T∑
s=t

δs−tC

u(as)− v

σ2
0 −

1

ρs−1 + 1
1
as

+γs

 .

Here, (ρt, . . . , ρT−1) are recursively defined by Bayes’ rule given (at, . . . , aT−1) and ρt−1 = ρ. The

standard argument of dynamic programming implies that, for each t = 1, . . . , T ,

V T
t (ρ) = max

a≥0
u(a)− v ·

(
σ2

0 −
1

ρ+ 1
1
a

+γt

)
+ δCV

T
t+1

(
ρ+

1
1
a

+ γt

)
, (26)

where V T
T+1(·) ≡ 0. I use induction to show that V T

1 (ρ) is decreasing and convex. First, V T
T+1

is trivially decreasing and convex. Suppose that V T
t+1 is decreasing and convex. Since −v ·(

σ2
0 − 1

ρ+ 1
1
a+γt

)
has the same property, V T

t (·) is also decreasing and convex. Thus, V T
1 (·) is

decreasing and convex.

Define V ∞(ρ) := limT→∞ V
T

1 (ρ). V ∞(ρ) is decreasing and convex, because these properties

are preserved under pointwise convergence. I show that V ∞(ρ) is the value function of the original

problem, i.e., V ∞(·) = V (·). Take any ρ, and let (ā1, ā2, . . . ) ∈ A∗(γ) denote the optimal policy.

For any finite T ,

V T
1 (ρ) ≥

T∑
s=1

δs−1
C

u(ās)− v

σ2
0 −

1

ρs−1 + 1
1
ās

+γs

 . (27)

By taking t→∞, we obtain V ∞(ρ) ≥ V (ρ). Suppose to the contrary that V ∞(ρ) > V (ρ). Then,

there is a sufficiently large T ∈ N such that V T
1 (ρ) − δTC

1−δC
vσ2

0 > V (ρ). If the consumer in the

original infinite horizon problem adopts the T -optimal policy that gives V T
1 (ρ) up to period t, then

she can obtain a strictly greater payoff than V (ρ), which is a contradiction. Thus, V ∞(ρ) = V (ρ).
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Suppose that the consumer starting from ρ + ∆ chooses the policy (āρt )t∈N that is optimal for

ρ. Let (ρ̂t)
∞
t=1 denote the induced sequence of the precisions after ρ + ∆, i.e. ρ̂t = ρ + ∆ +∑t

s=1
1

1

ā
ρ
s

+γs
. Note that ρ̂t ≥ ρt for all t ∈ N. Then, it holds that 0 ≤ V (ρ) − V (ρ + ∆) ≤∑∞

t=1 δ
t−1
C

(
1
ρ
− 1

ρ+∆

)
= 1

1−δC

(
1
ρ
− 1

ρ+∆

)
. Thus, limρ→∞ V (ρ)− V (ρ+ ∆) = 0.

F.3 Consequences of Previous Lemmas

The following is the proof of Proposition 8.

Proof. Since γt = γ for all t, the value function V (·) satisfies the Bellman equation

V (ρ) = max
a≥0

u(a)− v

(
σ2

0 −
1

ρ+ 1
1
a

+γ

)
+ δCV

(
ρ+

1
1
a

+ γ

)
. (28)

Lemma 8 implies that V (·) is decreasing and convex. Thus, the maximand in (28) has the increas-

ing differences in (a, ρ). Thus, ā(v, γ, ρ), the greatest maximizer, is increasing in ρ.

Define

v∗(γ) := sup {v ∈ R : ā1 (v, γ, ρ0) > 0} , where ρ0 =
1

σ2
0

. (29)

v∗(γ) is increasing because ā1 (v, γ, ρ0) is. Suppose to the contrary that there is a sequence γn →

∞ such that v∗(γn) ≤ v̄ for some v̄ < ∞. Take the consumer with v > v̄. Suppose that the

consumer takes at = amax = arg maxa≥0 u(a) for all t ∈ N. As, γn → ∞, the consumer’s

period-t payoff converges to u(amax) for each t ∈ N. As the consumer’s objective is continuous in

per-period payoffs with product topology, the sum of discounted payoffs converges to u(amax)
1−δC

> 0.

This contradicts that, for all n, the consumer with v > v̄ should choose ā1(v, γn, ρ0) = 0 and thus

at = 0 for all t. Thus, limγ→∞ v
∗(γ) =∞.

By the identical argument with the case of the myopic consumer, we can conclude that the

consumer’s activity level is positive and increasing in t if v < v∗(γ). This implies limt→∞ σ
2
t → 0,

or equivalently, limt→∞ ρt = ∞ with ρt := 1
σ2
t
. By Lemma 8, for any ρ > 0 and ∆ > 0,

limρ→∞ V (ρ)−V (ρ+∆) = 0. This, combined with limt→∞ ρt =∞, implies limt→∞ āt(v, γ, ρt) =

amax. Finally, v > v∗(γ) implies ā1 = 0. This implies āt = 0 for all t ∈ N because the conditional

variance does not change.
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The following result states that whenever the change in a privacy policy increases the precisions

of signals in some periods, the consumer chooses greater activity levels in other periods.

Lemma 9. Take any γ,γ ′ ∈ Γ. Define T = {t ∈ N : γt = γ′t}. Suppose that 1
āt(γ)

+γt ≤ 1
āt(γ′)

+γ′t

for all t ∈ N \ T . Then, āt(γ) ≥ āt(γ
′) for all t ∈ T .

Proof. Let β be any one of γ and γ ′. I decompose the consumer’s problem (19) into two steps.

First, given any (at)t6∈T , the consumer chooses (at)t∈T to maximize the following hypothetical

objective function:

∞∑
t=1

δt−1
C

1{t∈T }u(at)− v ·

σ2
0 −

1
1
σ2

0
+
∑t

s=1
1

1
as

+βs

 . (30)

Note that the consumer does not receive a benefit of u(at) in period t 6∈ T . This leads to a mapping

that maps any (at)t6∈T to the (greatest) optimal choice of (at)t∈T . In the second step, the consumer

chooses (at)t6∈T to maximize her original objective, taking the mapping (at)t6∈T 7→ (at)t∈T as

given.

For any t 6∈ T , at affects (30) only through 1
at

+γt, because 1{t∈T } = 0. Moreover, the same ar-

gument as in the proof of Lemma 4 implies that (30) is supermodular in

(
(at)t∈T ,

{(
1
as

+ γs

)−1
}
s 6∈T

)
.

This implies that if 1
āt(γ)

+γt ≤ 1
āt(γ′)

+γ′t for all t ∈ N\T , then āt(γ) ≥ āt(γ
′) for all t ∈ T .

F.4 limt→∞ a
∗
t = amax and limt→∞ σ

2
t = 0: Proof of Proposition 9

Proof. Let γ∗ denote the equilibrium privacy policy, and let a∗ denote the equilibrium activity

levels. First, I show limt→∞ σ
2
t = 0. Suppose to the contrary that limt→∞ σ

2
t 6= 0. As σ2

t is

decreasing, limt→∞ σ
2
t > 0 exists. This implies 1

a∗t
+ γ∗t →∞, which I prove to be a contradiction.

By Proposition 8, there exists a γ̂ such that v∗(γ̂) > v. That is, if the platform commits to

γt = γ̂ for all t, then the consumer chooses some ā > 0 in t = 1. Define B := 1
ā

+ γ̂. Consider

T ∗ such that, for all t ≥ T ∗, 1
a∗t

+ γ∗t > B. Suppose that the platform replaces γ∗t with γ̂ for all

t ≥ T ∗, and commits to such a new policy ex ante. Take any period t ≥ T ∗. Since the consumer’s

activity levels after T ∗ solve the Bellman equation with the “initial state” of ρ = 1
σ2
T∗−1

≥ 1
σ2

0
, the

consumer chooses an activity level greater than ā > 0 after period T ∗. Thus, the variance of the
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noise εt in the signal st is at most 1
ā

+ γ̂ < 1
a∗t

+ γ∗t . Thus, this change in the privacy policy strictly

increases the platform’s profit in any period t ≥ T ∗. By Lemma 9, this change also increases the

consumer’s activity level for any period t < T ∗. Thus, as a result of the deviation, the platform’s

payoffs increase in all periods and strictly increase in some periods, which contradicts γ∗ being

optimal. Thus, in equilibrium, limt→∞ σ
2
t = 0 holds. Finally, limt→∞ σ

2
t = 0 implies a∗t → amax:

Otherwise, there is a convergent subsequence a∗t(n) → a′ < amax, however, the consumer could be

strictly better off by choosing amax, due to Lemma 8.

G Forward-looking Consumer and Platform with Short-run Commitment:

Proof of Proposition 10

Proof. The existence of an equilibrium follows from Harris (1985). To prove the claim, first,

suppose to the contrary that, in some equilibrium, lim
t→∞

σ2
t > 0. The inequality implies limt→∞

1
a∗t

+

γ∗t = ∞, which implies limt→∞ a
∗
t = 0. Point 1 of Assumption 2 implies that there is a T ∈ N

such that for all t ≥ T , a∗t = 0. Suppose that the platform sets a privacy level γ̄ in period T .

If the consumer chooses at = 0 for all t ≥ T , her continuation payoff is − v
1−δC

(
σ2

0 − σ2
T−1

)
.

If she chooses aT = amax > 0 and as = 0 for all s ≥ T + 1, then her continuation payoff is

u(amax)− v
1−δC

(
σ2

0 − 1
1

σ2
T−1

+ 1
1

amax
+γ̄

)
. Thus, the consumer prefers the latter if and only if

u(amax)−
v

1− δC

σ2
0 −

1
1

σ2
T−1

+ 1
1

amax
+γ̄

 > − v

1− δC
(
σ2

0 − σ2
T−1

)

⇐⇒ u(amax)−
v

1− δC

 1

1
σ2
T−1

(
1

σ2
T−1

(
1

amax
+ γ̄
)

+ 1
)
 > 0. (31)

Moreover,

u(amax)−
v

1− δC

 1

1
σ2
T−1

(
1

σ2
T−1

(
1

amax
+ γ̄
)

+ 1
)
 ≥ u(amax)−

v

1− δC

 1

1
σ2

0

(
1
σ2

0

(
1

amax
+ γ̄
)

+ 1
)
 > 0,

where the last inequality comes from Point 2 of Assumption 2. Since (31) holds, at = 0 ∀t ≥ T

cannot be an optimal continuation strategy following γT = γ̄. In other words, the consumer
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chooses as > 0 for at least one s ≥ T . Thus, in period T , the platform must be choosing γT such

that as > 0 for some s ≥ T , which contradicts a∗t = 0 for all t ≥ T .

Second, suppose to the contrary that lim
t→∞

a∗t = amax fails, which implies that there is a strictly

increasing sequence (t(k))k∈N of natural numbers such that a∗t(k) < amax for all k. Take any k.

Suppose that the consumer deviates in period k so that at = amax for all t ≥ t(k). Then, her

continuation payoff is at least

u(amax)

1− δC
− v

∞∑
n=1

δn−1
C

σ2
0 −

1
1

σ2
t(k)−1

+ namax

 , (32)

which occurs if the platform sets γt = 0 for all t ≥ t(k). If the consumer follows the equilibrium

strategy, her continuation payoff is at most

∞∑
t=t(k)

δt−t(k)u(a∗t )−
v

1− δC
(
σ2

0 − σ2
t(k)

)
. (33)

Consider the difference

u(amax)

1− δC
−

∞∑
t=t(k)

δt−t(k)u(a∗t )︸ ︷︷ ︸
= Xk

−

v
∞∑
n=1

δn−1
C

σ2
0 −

1
1

σ2
t(k)−1

+ na∗

− v

1− δC
(
σ2

0 − σ2
t(k)

)︸ ︷︷ ︸
= Yk

.

(34)

First, Xk ≥ u(amax) − u(a′) > 0 , where a′ is the second largest element of A. Second,

limk→∞ Yk = 0, because both the first and second terms in Yk converge to v
1−δC

σ2
0 because of

limk→∞ σ
2
t(k) = 0. Thus, (34) is positive for a sufficiently large k. In other words, the consumer

has a profitable deviation in period t(k) for a large k, which is a contradiction.
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H Omitted Proofs for Section 7

H.1 Heterogeneous Consumers: Proof of Proposition 11

Take any equilibrium with (a∗t (v), σ2
t (v), γ∗t )t∈N,v∈V . Define σ2

∞(v) := limt→∞ σ
2
t (v). First, sup-

pose to the contrary that there is some v∗ ∈ V such that σ2
∞(v∗) > 0. Define

∆t :=
1

1− δP

∑
v∈V

αv
[
σ2

0 − σ2
∞(v)

]
− 1

1− δP

∑
v∈V

αv
[
σ2

0 − σ2
t−1(v)

]
. (35)

It holds limt→∞∆t = 0. Take any γ∗v ∈ arg minγ
1

a∗(v∗,γ,σ2
0)

+ γ. It holds that, for any σ2 ∈

[σ2
∞(v∗), σ2

0],

σ2 − 1
1
σ2 + 1

1
a∗(v∗,γ∗v ,σ2)

+γ∗v

≥σ2 − 1
1
σ2 + 1

1

a∗(v∗,γ∗v ,σ2
0)

+γ∗v

≥B := min
σ2∈[σ2

∞(v∗),σ2
0 ]
σ2 − 1

1
σ2 + 1

1

a∗(v∗,γ∗v ,σ2
0)

+γ∗v

>0.

The first inequality follows from a∗(v∗, γ, σ2
0) ≤ a∗(v, γ, σ2) for σ2 ≤ σ2

0 . The last inequality

holds because the minimand is continuous and positive on [σ2
∞(v∗), σ2

0]. For a sufficiently large t,

we obtain αvB
1−δP

> ∆t, or equivalently,

αvB

1− δP
+

1

1− δP

∑
v∈V

αv
[
σ2

0 − σ2
t−1(v)

]
>

1

1− δP

∑
v∈V

αv
[
σ2

0 − σ2
∞(v)

]
.

The left hand side is the lower bound of the time-t continuation value that the platform can get

by deviating to the privacy level γ∗v from time t on. The right hand side is the upper bound of the

time-t continuation value without deviation. Thus, the platform is strictly better off by committing

to a privacy policy that sets γ∗v from time t on. This is a contradiction. limt→∞ a
∗
t (v) = 0 and

lim→∞ γ
∗
t = 0 follow the proof of Proposition 2.
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H.2 General Privacy Cost: Proofs of Propositions 13, 14, and 15

Proof of Proposition 13. Consider any equilibrium. In period t, the consumer chooses a positive

activity level if

max
a≥0

u(a)− v

(
σ2

0 −
1

1
σ2
t−1

+ 1
1
a

+γ∗t

)
≥ −αv

(
σ2

0 − σ2
t−1

)
⇐⇒ max

a≥0
u(a)− v

(
ασ2

t−1 −
1

1
σ2
t−1

+ 1
1
a

+γ∗t

)
≥ (1− α)vσ2

0.

Let â1 and γ̂1 denote the equilibrium activity level and privacy level, respectively, in t = 1 of

the baseline model (i.e., α = 1). Then, let y1 = 1
â

+ γ̂. Define f(α, x, y) := αx − 1
1
x

+ 1
y

. f is

strictly convex in x. Thus, on the interval [0, σ2
0], f(α, ·, y) is maximized at x = σ2

0 if f(α, σ2
0, y) >

f(σ, 0, y), or equivalently, ασ2
0 − 1

1

σ2
0

+ 1
y

> 0. Moreover, the left hand side is decreasing in y. Thus,

this inequality holds for all y ≤ y1 if and only if ασ2
0 − 1

1

σ2
0

+ 1
y1

> 0. Take any ε > 0 and let

α′ ∈ [0, 1) satisfy

u(â1)− v

α′σ2
0 −

1
1
σ2

0
+ 1

1
â1

+γ̂1+ε

 ≥ (1− α′)vσ2
0. (36)

Such an α′ exists. Indeed, if ε = 0, then the above inequality holds for α′ = 1. Thus, if ε > 0,

then the inequality holds for some α′ < 1. Also, let α̂ < 1 satisfy α̂σ2
0 − 1

1

σ2
0

+ 1
1
â1

+γ̂1+ε

> 0. Define

α∗ = max(α′, α̂) < 1. Now, take any α ∈ [α∗, 1]. Then,

(36)⇒u(â1)− v

α∗σ2
t−1 −

1
1

σ2
t−1

+ 1
1
â1

+γ̂1+ε

 ≥ (1− α∗)vσ2
0

⇒u(â1)− v

ασ2
t−1 −

1
1

σ2
t−1

+ 1
1
â1

+γ̂1+ε

 ≥ (1− α)vσ2
0

⇒ max
a≥0

u(a)− v

(
ασ2

t−1 −
1

1
σ2
t−1

+ 1
1
a

+γ̂1+ε

)
≥ (1− α)vσ2

0 (37)

(37) implies that, in any period, if the platform sets γt = γ̂1 +ε, then the consumer chooses at > 0.

Recall that â1 > 0 is the optimal positive activity level given γ̂1 at σ2
0 in t = 1. Thus, at ≥ â1 holds

because γt > γ̂ and σ2
t−1 ≤ σ2

0 . In equilibrium, the platform sets γt to minimize the variance of the
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noise in st subject to the constraint

max
a≥0

u(a)− v

(
ασ2

t−1 −
1

1
σ2
t−1

+ 1
1
a

+γt

)
≥ (1− α)vσ2

0

The above argument implies that the variance of the noise in st is at most 1
â1

+ γ̂+ε, which implies

σ2
t → 0 in equilibrium. By the same proof as Proposition 2, σ2

t → 0 implies a∗t → amax and

γ∗t → 0.

Proof of Proposition 14. I adopt the notations in the proof of Proposition 4. In any period, the

consumer weakly prefers to use platform k (i.e., akt > 0 and a−kt = 0) if the following two

conditions hold:

arg max
a≥0

u(a)− v[σ2
0 − σ2

t,k(γ
k
t , a|σ2

t−1,k)]− αv[σ2
0 − σ2

t−1,−k]

≥ arg max
a≥0

u(a)− v[σ2
0 − σ2

t,−k(γ
−k
t , a|σ2

t−1,−k)]− αv[σ2
0 − σ2

t−1,k],

and

arg max
a≥0

u(a)− v[σ2
0 − σ2

t,k(γ
k
t , a|σ2

t−1,k)]− αv[σ2
0 − σ2

t−1,−k] ≥ −αv[σ2
0 − σ2

t−1,k]− αv[σ2
0 − σ2

t−1,−k].

These inequalities are equivalent to

arg max
a≥0

u(a)− v

[
ασ2

t−1,k −
1

1
σ2
t−1,k

+ 1
1
a

+γkt

]
︸ ︷︷ ︸

(A)

≥ arg max
a≥0

u(a)− v

ασ2
t−1,−k −

1
1

σ2
t−1,−k

+ 1
1
a

+γ−kt


︸ ︷︷ ︸

(B)

(38)

and

arg max
a≥0

u(a)− v

[
ασ2

t−1,k −
1

1
σ2
t−1,k

+ 1
1
a

+γkt

]
︸ ︷︷ ︸

(A)

≥ (1− α)vσ2
0. (39)

Let a(γ̄) := a∗(γ̄, σ2
0) in (3). By the same argument as Proposition 13, there is α∗ < 1 such that for
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any α ≥ α∗, the following holds: For any 1
a

+ γkt ≤ 1
a(γ̄)

+ γ̄, (A) is maximized at σ2
t−1,k = σ2

0; for

any 1
a

+ γ−kt ≤ 1
a(γ̄)

+ γ̄, (B) is maximized at σ2
t−1,−k = σ2

0 . These observations imply that if I and

E set the same privacy level γ̄, then the consumer optimally sets aIt > 0 = aEt . We can then apply

the proof of Proposition 4 to construct an equilibrium such that (i) E sets γEt = γ̄ for all t ∈ N, (ii)

I sets γIt to minimize the variance of the noise of st subject to constraints (38) and (39). The rest

of the proof follows the proof of Proposition 4.

Proof of Proposition 15. Consider the consumer’s problem in period t. Given the conditional vari-

ance σ2 at the end of period t − 1 and the privacy level γ in period t, the consumer chooses a to

maximize U(a, γ, σ2) := u(a)− C
(

1
1
σ2 + 1

1
a+γ

)
. It holds that

∂U

∂a
= u′(a) + C ′

(
1

1
σ2 + 1

1
a

+γ

)
· 1(

1
σ2 (1 + γa) + a

) ≥ u′(a)−B · 1(
1
σ2 (1 + γa) + a

) , (40)

where B := supx∈[0,σ2
0 ] |C ′(x)| < ∞. If lim

t→∞
σ2
t > 0, then limt→∞

1
a∗t

+ γ∗t = ∞. Consider a

hypothetical payoff function

UB(a, γ, σ2) = u(a)−B ·

(
σ2

0 −
1

1
σ2 + 1

1
a

+γ

)
.

(40) implies ∂U
∂a
≥ ∂UB

∂a
. Take any γ′ such that a∗B(γ′, σ2) := max {arg maxa≥0 UB(a, γ′, σ2

0)} > 0.

Then, for any σ2 ≤ σ2
0 , a∗(γ′, σ2) ≥ a∗B(γ′, σ2) ≥ a∗B(γ′, σ2

0) > 0. Take T such that for all t ≥ T ,
1
a∗t

+ γ∗t ≥ 1
a∗B(γ′,σ2

0)
+ γ′ Then, the platform can achieve a lower 1

at
+ γt for any t ≥ T by replacing

γ∗t with γ′, which is a contradiction. A similar argument implies that lim
t→∞

a∗t = amax.
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